Probabilistic Networks and Expert Systems


Book Description

Probabilistic expert systems are graphical networks which support the modeling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms. The book will be of interest to researchers in both artificial intelligence and statistics, who desire an introduction to this fascinating and rapidly developing field. The book, winner of the DeGroot Prize 2002, the only book prize in the field of statistics, is new in paperback.




Expert Systems and Probabilistic Network Models


Book Description

Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.




Probabilistic Reasoning in Expert Systems


Book Description

This text is a reprint of the seminal 1989 book Probabilistic Reasoning in Expert systems: Theory and Algorithms, which helped serve to create the field we now call Bayesian networks. It introduces the properties of Bayesian networks (called causal networks in the text), discusses algorithms for doing inference in Bayesian networks, covers abductive inference, and provides an introduction to decision analysis. Furthermore, it compares rule-base experts systems to ones based on Bayesian networks, and it introduces the frequentist and Bayesian approaches to probability. Finally, it provides a critique of the maximum entropy formalism. Probabilistic Reasoning in Expert Systems was written from the perspective of a mathematician with the emphasis being on the development of theorems and algorithms. Every effort was made to make the material accessible. There are ample examples throughout the text. This text is important reading for anyone interested in both the fundamentals of Bayesian networks and in the history of how they came to be. It also provides an insightful comparison of the two most prominent approaches to probability.




Probabilistic Reasoning in Intelligent Systems


Book Description

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.




Probabilistic Expert Systems


Book Description

Probabilistic Expert Systems emphasizes the basic computational principles that make probabilistic reasoning feasible in expert systems. The key to computation in these systems is the modularity of the probabilistic model. Shafer describes and compares the principal architectures for exploiting this modularity in the computation of prior and posterior probabilities. He also indicates how these similar yet different architectures apply to a wide variety of other problems of recursive computation in applied mathematics and operations research. The field of probabilistic expert systems has continued to flourish since the author delivered his lectures on the topic in June 1992, but the understanding of join-tree architectures has remained missing from the literature. This monograph fills this void by providing an analysis of join-tree methods for the computation of prior and posterior probabilities in belief nets. These methods, pioneered in the mid to late 1980s, continue to be central to the theory and practice of probabilistic expert systems. In addition to purely probabilistic expert systems, join-tree methods are also used in expert systems based on Dempster-Shafer belief functions or on possibility measures. Variations are also used for computation in relational databases, in linear optimization, and in constraint satisfaction. This book describes probabilistic expert systems in a more rigorous and focused way than existing literature, and provides an annotated bibliography that includes pointers to conferences and software. Also included are exercises that will help the reader begin to explore the problem of generalizing from probability to broader domains of recursive computation.




Interactive Collaborative Information Systems


Book Description

The increasing complexity of our world demands new perspectives on the role of technology in decision making. Human decision making has its li- tations in terms of information-processing capacity. We need new technology to cope with the increasingly complex and information-rich nature of our modern society. This is particularly true for critical environments such as crisis management and tra?c management, where humans need to engage in close collaborations with arti?cial systems to observe and understand the situation and respond in a sensible way. We believe that close collaborations between humans and arti?cial systems will become essential and that the importance of research into Interactive Collaborative Information Systems (ICIS) is self-evident. Developments in information and communication technology have ra- cally changed our working environments. The vast amount of information available nowadays and the wirelessly networked nature of our modern so- ety open up new opportunities to handle di?cult decision-making situations such as computer-supported situation assessment and distributed decision making. To make good use of these new possibilities, we need to update our traditional views on the role and capabilities of information systems. The aim of the Interactive Collaborative Information Systems project is to develop techniques that support humans in complex information en- ronments and that facilitate distributed decision-making capabilities. ICIS emphasizes the importance of building actor-agent communities: close c- laborations between human and arti?cial actors that highlight their comp- mentary capabilities, and in which task distribution is ?exible and adaptive.




Representing and Reasoning with Probabilistic Knowledge


Book Description

Probabilistic information has many uses in an intelligent system. This book explores logical formalisms for representing and reasoning with probabilistic information that will be of particular value to researchers in nonmonotonic reasoning, applications of probabilities, and knowledge representation. It demonstrates that probabilities are not limited to particular applications, like expert systems; they have an important role to play in the formal design and specification of intelligent systems in general. Fahiem Bacchus focuses on two distinct notions of probabilities: one propositional, involving degrees of belief, the other proportional, involving statistics. He constructs distinct logics with different semantics for each type of probability that are a significant advance in the formal tools available for representing and reasoning with probabilities. These logics can represent an extensive variety of qualitative assertions, eliminating requirements for exact point-valued probabilities, and they can represent firstshy;order logical information. The logics also have proof theories which give a formal specification for a class of reasoning that subsumes and integrates most of the probabilistic reasoning schemes so far developed in AI. Using the new logical tools to connect statistical with propositional probability, Bacchus also proposes a system of direct inference in which degrees of belief can be inferred from statistical knowledge and demonstrates how this mechanism can be applied to yield a powerful and intuitively satisfying system of defeasible or default reasoning. Fahiem Bacchus is Assistant Professor of Computer Science at the University of Waterloo, Ontario. Contents: Introduction. Propositional Probabilities. Statistical Probabilities. Combining Statistical and Propositional Probabilities Default Inferences from Statistical Knowledge.




Principles of Expert Systems


Book Description




Probabilistic Similarity Networks


Book Description

In this remarkable blend of formal theory and practical application, David Heckerman develops methods for building normative expert systems—expert systems that encode knowledge in a decision-theoretic framework. Heckerman introduces the similarity network and partition, two extensions to the influence diagram representation. He uses the new representations to construct Pathfinder, a large, normative expert system for the diagnosis of lymph-node diseases. Heckerman shows that such expert systems can be built efficiently, and that the use of a normative theory as the framework for representing knowledge can dramatically improve the quality of expertise that is delivered to the user. He concludes with a formal evaluation of the power of his methods for building normative expert systems. David Heckerman is Assistant Professor of Computer Science at the University of Southern California. He received his doctoral degree in Medical Information Sciences from Stanford University. Contents: Introduction. Similarity Networks and Partitions: A Simple Example. Theory of Similarity Networks. Pathfinder: A Case Study. An Evaluation of Pathfinder. Conclusions and Future Work.




Probabilistic Machine Learning


Book Description

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.