Probabilities, Causes and Propensities in Physics


Book Description

This volume defends a novel approach to the philosophy of physics: it is the first book devoted to a comparative study of probability, causality, and propensity, and their various interrelations, within the context of contemporary physics -- particularly quantum and statistical physics. The philosophical debates and distinctions are firmly grounded upon examples from actual physics, thus exemplifying a robustly empiricist approach. The essays, by both prominent scholars in the field and promising young researchers, constitute a pioneer effort in bringing out the connections between probabilistic, causal and dispositional aspects of the quantum domain. The book will appeal to specialists in philosophy and foundations of physics, philosophy of science in general, metaphysics, ontology of physics theories, and philosophy of probability.




Karl Popper's Science and Philosophy


Book Description

Of all philosophers of the 20th century, few built more bridges between academic disciplines than Karl Popper. He contributed to a wide variety of fields in addition to the epistemology and the theory of scientific method for which he is best known. This book illustrates and evaluates the impact, both substantive and methodological, that Popper has had in the natural and mathematical sciences. The topics selected include quantum mechanics, evolutionary biology, cosmology, mathematical logic, statistics, and cognitive science. The approach is multidisciplinary, opening a dialogue across scientific disciplines and between scientists and philosophers.




What Tends to Be


Book Description

People tend to enjoy listening to music or watching television, sleeping at night and celebrating birthdays. Plants tend to grow and thrive in sunlight and mild temperatures. We also know that tendencies are not perfectly regular and that there are patterns in the natural world, which are reliable to a degree, but not absolute. What should we make of a world where things tend to be one way but could be another? Is there a position between necessity and possibility? If there is, what are the implications for science, knowledge and ethics? This book explores these questions and is the first full-length treatment of the philosophy of tendencies. Anjum and Mumford argue that although the philosophical language of tendencies has been around since Aristotle, there has not been any serious commitment to the irreducible modality that they involve. They also argue that the acceptance of an irreducible and sui generis tendential modality ought to be the fundamental commitment of any genuine realism about dispositions or powers. It is the dispositional modality that makes dispositions authentically disposition-like. Armed with this theory the authors apply it to a variety of key philosophical topics such as chance, causation, epistemology and free will.




Quantum, Probability, Logic


Book Description

This volume provides a broad perspective on the state of the art in the philosophy and conceptual foundations of quantum mechanics. Its essays take their starting point in the work and influence of Itamar Pitowsky, who has greatly influenced our understanding of what is characteristically non-classical about quantum probabilities and quantum logic, and this serves as a vantage point from which they reflect on key ongoing debates in the field. Readers will find a definitive and multi-faceted description of the major open questions in the foundations of quantum mechanics today, including: Is quantum mechanics a new theory of (contextual) probability? Should the quantum state be interpreted objectively or subjectively? How should probability be understood in the Everett interpretation of quantum mechanics? What are the limits of the physical implementation of computation? The impact of this volume goes beyond the exposition of Pitowsky’s influence: it provides a unique collection of essays by leading thinkers containing profound reflections on the field. Chapter 1. Classical logic, classical probability, and quantum mechanics (Samson Abramsky) Chapter 2. Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanic (Valia Allori) Chapter 3. Unscrambling Subjective and Epistemic Probabilities (Guido Bacciagaluppi) Chapter 4. Wigner’s Friend as a Rational Agent (Veronika Baumann, Časlav Brukner) Chapter 5. Pitowsky's Epistemic Interpretation of Quantum Mechanics and the PBR Theorem (Yemima Ben-Menahem) Chapter 6. On the Mathematical Constitution and Explanation of Physical Facts (Joseph Berkovitz) Chapter 7. Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle (Harvey R. Brown, Gal Ben Porath) Chapter 8. ‘Two Dogmas’ Redu (Jeffrey Bub) Chapter 9. Physical Computability Theses (B. Jack Copeland, Oron Shagrir) Chapter 10. Agents in Healey’s Pragmatist Quantum Theory: A Comparison with Pitowsky’s Approach to Quantum Mechanics (Mauro Dorato) Chapter 11. Quantum Mechanics As a Theory of Observables and States and, Thereby, As a Theory of Probability (John Earman, Laura Ruetsche) Chapter 12. The Measurement Problem and two Dogmas about Quantum Mechanic (Laura Felline) Chapter 13. There Is More Than One Way to Skin a Cat: Quantum Information Principles In a Finite World(Amit Hagar) Chapter 14. Is Quantum Mechanics a New Theory of Probability? (Richard Healey) Chapter 15. Quantum Mechanics as a Theory of Probability (Meir Hemmo, Orly Shenker) Chapter 16. On the Three Types of Bell's Inequalities (Gábor Hofer-Szabó) Chapter 17. On the Descriptive Power of Probability Logic (Ehud Hrushovski) Chapter 18. The Argument against Quantum Computers (Gil Kalai) Chapter 19. Why a Relativistic Quantum Mechanical World Must be Indeterministic (Avi Levy, Meir Hemmo) Chapter 20. Subjectivists about Quantum Probabilities Should be Realists about Quantum States (Wayne C. Myrvold) Chapter 21. The Relativistic Einstein-Podolsky-Rosen Argument (Michael Redhead) Chapter 22. What price statistical independence? How Einstein missed the photon.(Simon Saunders) Chapter 23. How (Maximally) Contextual is Quantum Mechanics? (Andrew W. Simmons) Chapter 24. Roots and (Re)Sources of Value (In)Definiteness Versus Contextuality (Karl Svozil) Chapter 25: Schrödinger’s Reaction to the EPR Paper (Jos Uffink) Chapter 26. Derivations of the Born Rule (Lev Vaidman) Chapter 27. Dynamical States and the Conventionality of (Non-) Classicality (Alexander Wilce).




EPSA15 Selected Papers


Book Description

This edited collection showcases some of the best recent research in the philosophy of science. It comprises of thematically arranged papers presented at the 5th conference of the European Philosophy of Science Association (EPSA15), covering a broad variety of topics within general philosophy of science, and philosophical issues pertaining to specific sciences. The collection will appeal to researchers with an interest in the philosophical underpinnings of their own discipline, and to philosophers who wish to study the latest work on the themes discussed.




Statistical Mechanics And Scientific Explanation: Determinism, Indeterminism And Laws Of Nature


Book Description

The book explores several open questions in the philosophy and the foundations of statistical mechanics. Each chapter is written by a leading expert in philosophy of physics and/or mathematical physics. Here is a list of questions that are addressed in the book:




Probing The Meaning Of Quantum Mechanics: Information, Contextuality, Relationalism And Entanglement - Proceedings Of The Ii International Workshop On Quantum Mechanics And Quantum Information. Physical, Philosophical And Logical Approaches


Book Description

This book provides an interdisciplinary perspective on one of the most fascinating and important open questions in science: What is quantum mechanics talking about? Quantum theory is perhaps our best confirmed physical theory. However, despite its great empirical effectiveness and the subsequent technological developments that it gave rise to in the 20th century, from the interpretation of the periodic table of elements to CD players, holograms and quantum state teleportation, it stands even today without a universally accepted interpretation. The novelty of the book comes from the multiple viewpoints and subjects investigated by a group of researchers from Europe and North and South America.




The Cambridge Companion to Popper


Book Description

Karl Popper was one of the most influential philosophers of the twentieth century. His criticism of induction and his falsifiability criterion of demarcation between science and non-science were major contributions to the philosophy of science. Popper's broader philosophy of critical rationalism comprised a distinctive philosophy of social science and political theory. His critique of historicism and advocacy of the open society marked him out as a significant philosopher of freedom and reason. This book sets out the historical and intellectual contexts in which Popper worked, and offers an overview and diverse criticisms of his central ideas. The volume brings together contributors with expertise on Popper's work, including people personally associated with Popper (such as Jarvie, Miller, Musgrave, Petersen and Shearmur), specialists on the topics treated (Bradie, Godfrey-Smith and Jackson), and scholars with special interests in aspects of Popper's work (Andersson, Hacohen, Maxwell and Stokes).




A Philosophical Guide to Chance


Book Description

It is a commonplace that scientific inquiry makes extensive use of probabilities, many of which seem to be objective chances, describing features of reality that are independent of our minds. Such chances appear to have a number of paradoxical or puzzling features: they appear to be mind-independent facts, but they are intimately connected with rational psychology; they display a temporal asymmetry, but they are supposed to be grounded in physical laws that are time-symmetric; and chances are used to explain and predict frequencies of events, although they cannot be reduced to those frequencies. This book offers an accessible and non-technical introduction to these and other puzzles. Toby Handfield engages with traditional metaphysics and philosophy of science, drawing upon recent work in the foundations of quantum mechanics and thermodynamics to provide a novel account of objective probability that is empirically informed without requiring specialist scientific knowledge.




Reichenbach’s Paradise


Book Description

Since its introduction by Hans Reichenbach, many philosophers have claimed to refute the idea – known as the common cause principle – that any surprising correlation between any two factors that do not directly influence one another is due to some common cause. For example, falsity of the principle is frequently inferred from falsifiability of Bell’s inequalities. The author demonstrates, however, that the situation is not so straightforward. There is more than one version of the principle formulated with the use of different variants of Reichenbach-inspired notions; their falsity still remains an open question. The book traces different formulations of the principle and provides proofs of a few pertinent theorems, settling the relevant questions in various probability spaces. In exploring mathematical and philosophical issues surrounding the principle, the book offers both philosophical insight and mathematical rigor.