Book Description
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
Author : Glenn Shafer
Publisher : John Wiley & Sons
Page : 438 pages
File Size : 39,47 MB
Release : 2005-02-25
Category : Business & Economics
ISBN : 0471461717
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
Author : Glenn Shafer
Publisher : John Wiley & Sons
Page : 483 pages
File Size : 18,17 MB
Release : 2019-03-21
Category : Business & Economics
ISBN : 1118547934
Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University
Author : Svetlozar T. Rachev
Publisher : John Wiley & Sons
Page : 676 pages
File Size : 46,42 MB
Release : 2010-07-30
Category : Business & Economics
ISBN : 0470906324
A comprehensive look at how probability and statistics is applied to the investment process Finance has become increasingly more quantitative, drawing on techniques in probability and statistics that many finance practitioners have not had exposure to before. In order to keep up, you need a firm understanding of this discipline. Probability and Statistics for Finance addresses this issue by showing you how to apply quantitative methods to portfolios, and in all matter of your practices, in a clear, concise manner. Informative and accessible, this guide starts off with the basics and builds to an intermediate level of mastery. • Outlines an array of topics in probability and statistics and how to apply them in the world of finance • Includes detailed discussions of descriptive statistics, basic probability theory, inductive statistics, and multivariate analysis • Offers real-world illustrations of the issues addressed throughout the text The authors cover a wide range of topics in this book, which can be used by all finance professionals as well as students aspiring to enter the field of finance.
Author : Jan Malczak
Publisher : Cambridge University Press
Page : 197 pages
File Size : 31,95 MB
Release : 2014
Category : Business & Economics
ISBN : 1107002494
A rigorous, unfussy introduction to modern probability theory that focuses squarely on applications in finance.
Author : Guojun Gan
Publisher : John Wiley & Sons
Page : 54 pages
File Size : 21,20 MB
Release : 2014-04-07
Category : Mathematics
ISBN : 1118831969
An introduction to the mathematical theory and financial models developed and used on Wall Street Providing both a theoretical and practical approach to the underlying mathematical theory behind financial models, Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach presents important concepts and results in measure theory, probability theory, stochastic processes, and stochastic calculus. Measure theory is indispensable to the rigorous development of probability theory and is also necessary to properly address martingale measures, the change of numeraire theory, and LIBOR market models. In addition, probability theory is presented to facilitate the development of stochastic processes, including martingales and Brownian motions, while stochastic processes and stochastic calculus are discussed to model asset prices and develop derivative pricing models. The authors promote a problem-solving approach when applying mathematics in real-world situations, and readers are encouraged to address theorems and problems with mathematical rigor. In addition, Measure, Probability, and Mathematical Finance features: A comprehensive list of concepts and theorems from measure theory, probability theory, stochastic processes, and stochastic calculus Over 500 problems with hints and select solutions to reinforce basic concepts and important theorems Classic derivative pricing models in mathematical finance that have been developed and published since the seminal work of Black and Scholes Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach is an ideal textbook for introductory quantitative courses in business, economics, and mathematical finance at the upper-undergraduate and graduate levels. The book is also a useful reference for readers who need to build their mathematical skills in order to better understand the mathematical theory of derivative pricing models.
Author : Patrick Boyle
Publisher :
Page : 304 pages
File Size : 32,67 MB
Release : 2020-05-14
Category :
ISBN :
Statistics for the Trading Floor: Data Science for Investing is the best book on statistics for investing. Written for professionals by a professional trader and hedge fund manager, the book gives a thorough grounding in quantitative methods used by investing professionals.
Author : Seán Dineen
Publisher : American Mathematical Soc.
Page : 323 pages
File Size : 12,46 MB
Release : 2013-05-22
Category : Mathematics
ISBN : 0821894900
The use of the Black-Scholes model and formula is pervasive in financial markets. There are very few undergraduate textbooks available on the subject and, until now, almost none written by mathematicians. Based on a course given by the author, the goal of
Author : Ioannis Karatzas
Publisher : Springer Science & Business Media
Page : 427 pages
File Size : 29,93 MB
Release : 1998-08-13
Category : Business & Economics
ISBN : 0387948392
This monograph is a sequel to Brownian Motion and Stochastic Calculus by the same authors. Within the context of Brownian-motion- driven asset prices, it develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets. The latter topic is extended to a study of equilibrium, providing conditions for the existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the text. This monograph should be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. The chapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options. Also available by Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer-Verlag New York, Inc., 1991, 470 pp., ISBN 0-387- 97655-8.
Author : Paul Glasserman
Publisher : Springer Science & Business Media
Page : 603 pages
File Size : 33,70 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 0387216170
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Author : Walter A. Rosenkrantz
Publisher : CRC Press
Page : 680 pages
File Size : 33,20 MB
Release : 2008-07-10
Category : Mathematics
ISBN : 158488813X
Integrating interesting and widely used concepts of financial engineering into traditional statistics courses, Introduction to Probability and Statistics for Science, Engineering, and Finance illustrates the role and scope of statistics and probability in various fields. The text first introduces the basics needed to understand and create