Probability in Physics


Book Description

What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.




Probability and Schr”dinger's Mechanics


Book Description

This book addresses some of the problems of interpreting Schr”dinger's mechanics ? the most complete and explicit theory falling under the umbrella of ?quantum theory?. The outlook is materialist (?realist?) and stresses the development of Schr”dinger's mechanics from classical theories and its close connections with (particularly) the Hamilton?Jacobi theory. Emphasis is placed on the concepts and use of the modern objective (measure-theoretic) probability theory. The work is free from any mention of the bearing of Schr”dinger's mechanics on God, his alleged mind or, indeed, minds at all. The author has taken the na‹ve view that this mechanics is about the structure and dynamics of atomic and sub-atomic systems since he has been unable to trace any references to minds, consciousness or measurements in the foundations of the theory.




An Introduction to Advanced Quantum Physics


Book Description

An Introduction to Advanced Quantum Physics presents important concepts from classical mechanics, electricity and magnetism, statistical physics, and quantum physics brought together to discuss the interaction of radiation and matter, selection rules, symmetries and conservation laws, scattering, relativistic quantum mechanics, apparent paradoxes, elementary quantum field theory, electromagnetic and weak interactions, and much more. This book consists of two parts: Part 1 comprises the material suitable for a second course in quantum physics and covers: Electromagnetic Radiation and Matter Scattering Symmetries and Conservation Laws Relativistic Quantum Physics Special Topics Part 2 presents elementary quantum field theory and discusses: Second Quantization of Spin 1/2 and Spin 1 Fields Covariant Perturbation Theory and Applications Quantum Electrodynamics Each chapter concludes with problems to challenge the students’ understanding of the material. This text is intended for graduate and ambitious undergraduate students in physics, material sciences, and related disciplines.




Geometry of Quantum States


Book Description

Quantum information theory is at the frontiers of physics, mathematics and information science, offering a variety of solutions that are impossible using classical theory. This book provides an introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. After a gentle introduction to the necessary mathematics the authors describe the geometry of quantum state spaces. Focusing on finite dimensional Hilbert spaces, they discuss the statistical distance measures and entropies used in quantum theory. The final part of the book is devoted to quantum entanglement - a non-intuitive phenomenon discovered by Schrödinger, which has become a key resource for quantum computation. This richly-illustrated book is useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied.




A Student's Guide to the Schrödinger Equation


Book Description

A clear guide to the key concepts and mathematical techniques underlying the Schrödinger equation, including homework problems and fully worked solutions.




Quantum Mechanics


Book Description

Written for a two-semester graduate course in Quantum Mechanics, this comprehensive text helps develop the tools and formalism of Quantum Mechanics and its applications to physical systems. It suits students who have taken some introductory Quantum Mechanics and Modern Physics courses at undergraduate level, but it is self-contained and does not assume any specific background knowledge beyond appropriate fluency in mathematics. The text takes a modern logical approach rather than a historical one and it covers standard material, such as the hydrogen atom and the harmonic oscillator, the WKB approximations and Bohr-Sommerfeld quantization. Important modern topics and examples are also described, including Berry phase, quantum information, complexity and chaos, decoherence and thermalization, nonstandard statistics, as well as more advanced material such as path integrals, scattering theory, multiparticles and Fock space. Readers will gain a broad overview of Quantum Mechanics, as solid preparation for further study or research.




An Introduction to the Theory of Probability


Book Description

The Theory of Probability is a major tool that can be used to explain and understand the various phenomena in different natural, physical and social sciences. This book provides a systematic exposition of the theory in a setting which contains a balanced mixture of the classical approach and the modern day axiomatic approach. After reviewing the basis of the theory, the book considers univariate distributions, bivariate normal distribution, multinomial distribution and convergence of random variables. Difficult ideas have been explained lucidly and have been augmented with explanatory notes, examples and exercises. The basic requirement for reading this book is simply a knowledge of mathematics at graduate level. This book tries to explain the difficult ideas in the axiomatic approach to the theory of probability in a clear and comprehensible manner. It includes several unusual distributions including the power series distribution that have been covered in great detail. Readers will find many worked-out examples and exercises with hints, which will make the book easily readable and engaging. The author is a former Professor of the Indian Statistical Institute, India.




Ubiquitous Quantum Structure


Book Description

Quantum-like structure is present practically everywhere. Quantum-like (QL) models, i.e. models based on the mathematical formalism of quantum mechanics and its generalizations can be successfully applied to cognitive science, psychology, genetics, economics, finances, and game theory. This book is not about quantum mechanics as a physical theory. The short review of quantum postulates is therefore mainly of historical value: quantum mechanics is just the first example of the successful application of non-Kolmogorov probabilities, the first step towards a contextual probabilistic description of natural, biological, psychological, social, economical or financial phenomena. A general contextual probabilistic model (Växjö model) is presented. It can be used for describing probabilities in both quantum and classical (statistical) mechanics as well as in the above mentioned phenomena. This model can be represented in a quantum-like way, namely, in complex and more general Hilbert spaces. In this way quantum probability is totally demystified: Born's representation of quantum probabilities by complex probability amplitudes, wave functions, is simply a special representation of this type.




Quantum Information and Consciousness


Book Description

"I loved the book! This book is not just interesting, it is exciting. I have probably read every significant book in the field, and this is the strongest and most convincing one yet. It is also one of the most comprehensive in its explanations. I shall most certainly recommend the book to colleagues." –Richard G. Petty, MD "a very good introduction to the basic theory of quantum systems.... Dr. Georgiev’s book aptly prepares the reader to confront whatever might be in store later." –from the Foreword by Prof. James F. Glazebrook, Eastern Illinois University This book addresses the fascinating cross-disciplinary field of quantum information theory applied to the study of brain function. It offers a self-study guide to probe the problems of consciousness, including a concise but rigorous introduction to classical and quantum information theory, theoretical neuroscience, and philosophy of the mind. It aims to address long-standing problems related to consciousness within the framework of modern theoretical physics in a comprehensible manner that elucidates the nature of the mind-body relationship. The reader also gains an overview of methods for constructing and testing quantum informational theories of consciousness.




Understanding and Calculating the Odds


Book Description

This book presents not only the mathematical concept of probability, but also its philosophical aspects, the relativity of probability and its applications and even the psychology of probability. All explanations are made in a comprehensible manner and are supported with suggestive examples from nature and daily life, and even with challenging math paradoxes. (Mathematics)