Probability Inequalities


Book Description

Inequality has become an essential tool in many areas of mathematical research, for example in probability and statistics where it is frequently used in the proofs. "Probability Inequalities" covers inequalities related with events, distribution functions, characteristic functions, moments and random variables (elements) and their sum. The book shall serve as a useful tool and reference for scientists in the areas of probability and statistics, and applied mathematics. Prof. Zhengyan Lin is a fellow of the Institute of Mathematical Statistics and currently a professor at Zhejiang University, Hangzhou, China. He is the prize winner of National Natural Science Award of China in 1997. Prof. Zhidong Bai is a fellow of TWAS and the Institute of Mathematical Statistics; he is a professor at the National University of Singapore and Northeast Normal University, Changchun, China.




Probability Inequalities in Multivariate Distributions


Book Description

Probability Inequalities in Multivariate Distributions is a comprehensive treatment of probability inequalities in multivariate distributions, balancing the treatment between theory and applications. The book is concerned only with those inequalities that are of types T1-T5. The conditions for such inequalities range from very specific to very general. Comprised of eight chapters, this volume begins by presenting a classification of probability inequalities, followed by a discussion on inequalities for multivariate normal distribution as well as their dependence on correlation coefficients. The reader is then introduced to inequalities for other well-known distributions, including the multivariate distributions of t, chi-square, and F; inequalities for a class of symmetric unimodal distributions and for a certain class of random variables that are positively dependent by association or by mixture; and inequalities obtainable through the mathematical tool of majorization and weak majorization. The book also describes some distribution-free inequalities before concluding with an overview of their applications in simultaneous confidence regions, hypothesis testing, multiple decision problems, and reliability and life testing. This monograph is intended for mathematicians, statisticians, students, and those who are primarily interested in inequalities.




The Collected Works of Wassily Hoeffding


Book Description

It has been a rare privilege to assemble this volume of Wassily Hoeffding's Collected Works. Wassily was, variously, a teacher, supervisor and colleague to us, and his work has had a profound influence on our own. Yet this would not be sufficient reason to publish his collected works. The additional and overwhelmingly compelling justification comes from the fun damental nature of his contributions to Statistics and Probability. Not only were his ideas original, and far-reaching in their implications; Wassily de veloped them so completely and elegantly in his papers that they are still cited as prime references up to half a century later. However, three of his earliest papers are cited rarely, if ever. These include material from his doctoral dissertation. They were written in German, and two of them were published in relatively obscure series. Rather than reprint the original articles, we have chosen to have them translated into English. These trans lations appear in this book, making Wassily's earliest research available to a wide audience for the first time. All other articles (including those of his contributions to Mathematical Reviews which go beyond a simple reporting of contents of articles) have been reproduced as they appeared, together with annotations and corrections made by Wassily on some private copies of his papers. Preceding these articles are three review papers which dis cuss the . impact of his work in some of the areas where he made major contributions.




Probabilistic Inequalities


Book Description

In this monograph, the author presents univariate and multivariate probabilistic inequalities with coverage on basic probabilistic entities like expectation, variance, moment generating function and covariance. These are built on the recent classical form of real analysis inequalities which are also discussed in full details. This treatise is the culmination and crystallization of the author's last two decades of research work in related discipline. Each of the chapters is self-contained and a few advanced courses can be taught out of this book. Extensive background and motivations for specific topics are given in each chapter. A very extensive list of references is also provided at the end.The topics covered in this unique book are wide-ranging and diverse. The opening chapters examine the probabilistic Ostrowski type inequalities, and various related ones, as well as the largely discusses about the Grothendieck type probabilistic inequalities. The book is also about inequalities in information theory and the Csiszar's f-Divergence between probability measures. A great section of the book is also devoted to the applications in various directions of Geometry Moment Theory. Also, the development of the Grüss type and Chebyshev-Grüss type inequalities for Stieltjes integrals and the applications in probability are explored in detail. The final chapters discuss the important real analysis methods with potential applications to stochastics. The book will be of interest to researchers and graduate students, and it is also seen as an invaluable reference book to be acquired by all science libraries as well as seminars that conduct discussions on related topics.




Inequalities in Analysis and Probability


Book Description

The book is aimed at graduate students and researchers with basic knowledge of Probability and Integration Theory. It introduces classical inequalities in vector and functional spaces with applications to probability. It also develops new extensions of the analytical inequalities, with sharper bounds and generalizations to the sum or the supremum of random variables, to martingales and to transformed Brownian motions. The proofs of the new results are presented in great detail. Book jacket.







Concentration Inequalities


Book Description

Describes the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.




High-Dimensional Probability


Book Description

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.




Concentration Inequalities for Sums and Martingales


Book Description

The purpose of this book is to provide an overview of historical and recent results on concentration inequalities for sums of independent random variables and for martingales. The first chapter is devoted to classical asymptotic results in probability such as the strong law of large numbers and the central limit theorem. Our goal is to show that it is really interesting to make use of concentration inequalities for sums and martingales. The second chapter deals with classical concentration inequalities for sums of independent random variables such as the famous Hoeffding, Bennett, Bernstein and Talagrand inequalities. Further results and improvements are also provided such as the missing factors in those inequalities. The third chapter concerns concentration inequalities for martingales such as Azuma-Hoeffding, Freedman and De la Pena inequalities. Several extensions are also provided. The fourth chapter is devoted to applications of concentration inequalities in probability and statistics.




Inequalities and Extremal Problems in Probability and Statistics


Book Description

Inequalities and Extremal Problems in Probability and Statistics: Selected Topics presents various kinds of useful inequalities that are applicable in many areas of mathematics, the sciences, and engineering. The book enables the reader to grasp the importance of inequalities and how they relate to probability and statistics. This will be an extremely useful book for researchers and graduate students in probability, statistics, and econometrics, as well as specialists working across sciences, engineering, financial mathematics, insurance, and mathematical modeling of large risks. - Teaches users how to understand useful inequalities - Applicable across mathematics, sciences, and engineering - Presented by a team of leading experts