Probability on Algebraic and Geometric Structures


Book Description

This volume contains the proceedings of the International Research Conference “Probability on Algebraic and Geometric Structures”, held from June 5–7, 2014, at Southern Illinois University, Carbondale, IL, celebrating the careers of Philip Feinsilver, Salah-Eldin A. Mohammed, and Arunava Mukherjea. These proceedings include survey papers and new research on a variety of topics such as probability measures and the behavior of stochastic processes on groups, semigroups, and Clifford algebras; algebraic methods for analyzing Markov chains and products of random matrices; stochastic integrals and stochastic ordinary, partial, and functional differential equations.




Modern Geometric Structures and Fields


Book Description

Presents the basics of Riemannian geometry in its modern form as geometry of differentiable manifolds and the important structures on them. This book shows that Riemannian geometry has a great influence to several fundamental areas of modern mathematics and its applications.




Geometric Structures of Information


Book Description

This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI’2017 – Geometric Science of Information.




Geometric Aspects of Probability Theory and Mathematical Statistics


Book Description

It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.




High-Dimensional Probability


Book Description

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.




Introduction to Non-linear Algebra


Book Description

Literaturverz. S. 267 - 269




Probability with Martingales


Book Description

This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.




Model Theory of Stochastic Processes


Book Description

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourteenth publication in the Lecture Notes in Logic series, Fajardo and Keisler present new research combining probability theory and mathematical logic. It is a general study of stochastic processes using ideas from model theory, a key central theme being the question, 'When are two stochastic processes alike?' The authors assume some background in nonstandard analysis, but prior knowledge of model theory and advanced logic is not necessary. This volume will appeal to mathematicians willing to explore new developments with an open mind.




Ergodic Theory via Joinings


Book Description

This book introduces modern ergodic theory. It emphasizes a new approach that relies on the technique of joining two (or more) dynamical systems. This approach has proved to be fruitful in many recent works, and this is the first time that the entire theory is presented from a joining perspective. Another new feature of the book is the presentation of basic definitions of ergodic theory in terms of the Koopman unitary representation associated with a dynamical system and the invariant mean on matrix coefficients, which exists for any acting groups, amenable or not. Accordingly, the first part of the book treats the ergodic theory for an action of an arbitrary countable group. The second part, which deals with entropy theory, is confined (for the sake of simplicity) to the classical case of a single measure-preserving transformation on a Lebesgue probability space.




Foundations of Differential Geometry, Volume 2


Book Description

This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.