Probing Surfaces and Interfaces by Nonlinear Optical Spectroscopy with Time, Energy, and Phase Resolution


Book Description

We found that this coupling can be controlled by changing the azimuthal angle. However, p-type GaAs does not show distinct features in the second harmonic spectrum. Experiments on bilayers consisting of p-type GaAs and copper pthalocyanine (CuPc) are also presented in chapter 5. No changes in the signal are observed for either the constituents alone. However, when CuPc is deposited on GaAs a transient state forms at 200 fs delay between the pump delay which also exhibits an asymmetric line shape. This indicates the formation of a new state at the heterojunction that was not present before and may be evidence for a charge transfer state. Chapter 6 closes the thesis with concluding remarks which suggest improvements in the experimental design and implementation of time-resolved second harmonic spectral interferometry.




Epioptics


Book Description

The study of condensed matter using optical techniques, where photons act as both probe and signal, has a long history. It is only recently, however, that the extraction of surface and interface information, with submonolayer resolution, has been shown to be possible using optical techniques (where "optical" applies to electromagnetic radiation in and around the visible region of the spectrum). This book describes these "epioptic" techniques, which have now been quite widely applied to semiconductor surfaces and interfaces. Particular emphasis in the book is placed on recent studies of submonolayer growth on well-characterised semiconductor surfaces, many of which have arisen from CEC DGJGII ESPRIT Basic Research Action No. 3177 "EPIOPTIC", and CEU DGIII ESPRIT Basic Research Action No. 6878 "EASI". Techniques using other areas of the spectrum such as the infra-red region (IR spectroscopy, in its various surface configurations), and the x-ray region (surface x-ray diffraction, x-ray standing wave), are omitted. The optical techniques described use simple lamp or small laser sources and are thus, in principle, easily accessible. Epioptic probes can provide new information on solid-gas, solid-liquid and liquid-liquid interfaces. They are particularly suited to growth monitoring. Emerging process technologies for fabricating submicron and nanoscale semiconductor devices and novel multilayer materials, whether based on silicon or compound semiconductors, all require extremely precise control of growth at surfaces. In situ, non-destructive, real-time monitoring and characterisation of surfaces under growth conditions is needed for further progress. Both atomic scale resolution, and non-destructive characterisation of buried structures, are required.




Laser Spectroscopy and Photochemistry on Metal Surfaces


Book Description

Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.




Laser Optics of Condensed Matter


Book Description

Session 1 Elementary Excitations and Excitation Transport.- Picosecond Resolved Optically Driven Phonon Dynamics.- Relaxation and Propagation of High Frequency Phonons in Thin Crystalline Plates After Intense Laser Pumping.- Evolution in Real Time and Space of Short Polariton Pulses in Crystals.- Quasielastic Electronic Light Scattering in Semiconductors at Low Concentrations of Current Carriers.- Condensed Matter Science With Far Infra Red Free Electron Lasers (Abstract).- Nonequilibrium Terahertz Range Acoustic Phonons and Luminescence of Excitons in Semiconductors.- Session II Optical Properties of Surfaces and Interfaces.- Nonlinear Optical Studies of Molecular Adsorbates.- Enhancement of Exciton Transition Probabilities in Ultrathin Films of Cadmium Telluride.- Studies of Semiconductor Surfaces and Interfaces by Three Wave Mixing Spectroscopy (Abstract).- Time-Resolved Resonant Reflection of Light.- Femtosecond Photoemission Studies of Image Potential and Electron Dynamics in Metals.- High Intensity, Ultrashort Pulse Laser Heated Solids.- Session III Optical Studies of Growth, Instabilities and Pattern Formation.- Control of Transversal Interactions in Nonlinear Optics: New Spatio-Temporal Effects in Nonlinear Wave Dynamics (Abstract).- Synchronization of Atomic Quantum Transitions by Light Pulses.- Chaos in Nonlinear Optics.- Self-Organizaiton and Spatio-Temporal Chaos in Phase-Locked Semiconductor Laser Arrays (Abstract).- Competitive and Cooperative Dynamics in Optical Neural Networks (Abstract).- Transitions Between Ordered and Disordered Solid-Melt Patterns Formed on Silicon by Continuous Laser Beams: Competition Between Electrodynamics and Thermodynamics.- Session IV Elementary Excitations and Excitation Transport.- Light Scattering in Oxide Superconductors.- Raman Scattering in High-Tc Superconductors YBa2Cu3Ox With Different Oxygen Contents.- Raman Scattering from High Temperature Superconductors.- Decay of Exciton Gratings in Anthracene: Anisotropy of Lowest Exciton Bands and Coexistence of Longpath and Shortpath Waveguide Modes.- Excitation Transport in Polymeric Solids.- Vibron Lifetimes in Molecular Crystals.- Session V Optical Properties of Critical Phenomena Random Systems, and Coherent Phenomena.- Anomalies of the Elastic Light Scattering at Phase Transitions in Crystals with Point Defects.- Dynamical Fluctuations in a Dipolar Glass.- Localization of Light in Random Media (Abstract).- Quantum Optic and Transient Effects of Excitonic Polaritons, and Properties of Phonoritons.- Nonclassical Field Correlations in Quantum Optics (Abstract).- Phase-Conjugated Wave Enhanced by Weak Localization of Exciton-Polaritons.- Session VI Nonlinear Optical Properties of Semiconductors Organics and Fibers.- The Historical Relationship Between Nonlinear Optics and Condensed Matter (Abstract).- Optical Nonlinearities Enhanced by Carrier Transport.- Organic Nonlinear Optical Materials and Devices for Optoelectronics (Abstract).- Nonlinear Optical Susceptibilities of Surface Layers of Metals and Super- and Semiconductors Related to Electronic Structure and Crystal Symmetry.- Second Harmonic Generation in Optical Fibers.- Nonlinear Optical Probes of Glassy Polymers.- Session VII Quantum Wells.- Photoluminescence of Hot Electrons and Scattering Processes in Quantum-Well Structures.- High Resolution Nonlinear Laser Spectroscopy Measurements of Exciton Dynamics in GaAs Quantum Well Structures.- Optical Spectroscopy in the Regime of the Fractional Quantum Hall Effect.- Geminate Recombination in MQW Structures in a Magnetic Field.- Investigation of Two-Electron-Hole Pair Resonances in Semiconductor Quantum Dots.- Many Body Effects in Homogeneous Quasi 2D Electron-Hole Plasma in Undoped and Modulation Doped InGaAs Single Quantum Wells.- Session VIII Recent Significant Developments.- Pulsed Diffusing-Wave Spectroscopy in Dense Colloids.- Waves on Corrugated Surfaces: K-Gaps and Enhanced Backscattering.- Black Hole Radiation: Can Vir...




Laser Spectroscopy And Photochemistry On Metal Surfaces (In 2 Parts) - Part 1


Book Description

Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.




Laser Optics of Condensed Matter


Book Description

Session 1 Elementary Excitations and Excitation Transport.- Picosecond Resolved Optically Driven Phonon Dynamics.- Relaxation and Propagation of High Frequency Phonons in Thin Crystalline Plates After Intense Laser Pumping.- Evolution in Real Time and Space of Short Polariton Pulses in Crystals.- Quasielastic Electronic Light Scattering in Semiconductors at Low Concentrations of Current Carriers.- Condensed Matter Science With Far Infra Red Free Electron Lasers (Abstract).- Nonequilibrium Terahertz Range Acoustic Phonons and Luminescence of Excitons in Semiconductors.- Session II Optical Properties of Surfaces and Interfaces.- Nonlinear Optical Studies of Molecular Adsorbates.- Enhancement of Exciton Transition Probabilities in Ultrathin Films of Cadmium Telluride.- Studies of Semiconductor Surfaces and Interfaces by Three Wave Mixing Spectroscopy (Abstract).- Time-Resolved Resonant Reflection of Light.- Femtosecond Photoemission Studies of Image Potential and Electron Dynamics in Metals.- High Intensity, Ultrashort Pulse Laser Heated Solids.- Session III Optical Studies of Growth, Instabilities and Pattern Formation.- Control of Transversal Interactions in Nonlinear Optics: New Spatio-Temporal Effects in Nonlinear Wave Dynamics (Abstract).- Synchronization of Atomic Quantum Transitions by Light Pulses.- Chaos in Nonlinear Optics.- Self-Organizaiton and Spatio-Temporal Chaos in Phase-Locked Semiconductor Laser Arrays (Abstract).- Competitive and Cooperative Dynamics in Optical Neural Networks (Abstract).- Transitions Between Ordered and Disordered Solid-Melt Patterns Formed on Silicon by Continuous Laser Beams: Competition Between Electrodynamics and Thermodynamics.- Session IV Elementary Excitations and Excitation Transport.- Light Scattering in Oxide Superconductors.- Raman Scattering in High-Tc Superconductors YBa2Cu3Ox With Different Oxygen Contents.- Raman Scattering from High Temperature Superconductors.- Decay of Exciton Gratings in Anthracene: Anisotropy of Lowest Exciton Bands and Coexistence of Longpath and Shortpath Waveguide Modes.- Excitation Transport in Polymeric Solids.- Vibron Lifetimes in Molecular Crystals.- Session V Optical Properties of Critical Phenomena Random Systems, and Coherent Phenomena.- Anomalies of the Elastic Light Scattering at Phase Transitions in Crystals with Point Defects.- Dynamical Fluctuations in a Dipolar Glass.- Localization of Light in Random Media (Abstract).- Quantum Optic and Transient Effects of Excitonic Polaritons, and Properties of Phonoritons.- Nonclassical Field Correlations in Quantum Optics (Abstract).- Phase-Conjugated Wave Enhanced by Weak Localization of Exciton-Polaritons.- Session VI Nonlinear Optical Properties of Semiconductors Organics and Fibers.- The Historical Relationship Between Nonlinear Optics and Condensed Matter (Abstract).- Optical Nonlinearities Enhanced by Carrier Transport.- Organic Nonlinear Optical Materials and Devices for Optoelectronics (Abstract).- Nonlinear Optical Susceptibilities of Surface Layers of Metals and Super- and Semiconductors Related to Electronic Structure and Crystal Symmetry.- Second Harmonic Generation in Optical Fibers.- Nonlinear Optical Probes of Glassy Polymers.- Session VII Quantum Wells.- Photoluminescence of Hot Electrons and Scattering Processes in Quantum-Well Structures.- High Resolution Nonlinear Laser Spectroscopy Measurements of Exciton Dynamics in GaAs Quantum Well Structures.- Optical Spectroscopy in the Regime of the Fractional Quantum Hall Effect.- Geminate Recombination in MQW Structures in a Magnetic Field.- Investigation of Two-Electron-Hole Pair Resonances in Semiconductor Quantum Dots.- Many Body Effects in Homogeneous Quasi 2D Electron-Hole Plasma in Undoped and Modulation Doped InGaAs Single Quantum Wells.- Session VIII Recent Significant Developments.- Pulsed Diffusing-Wave Spectroscopy in Dense Colloids.- Waves on Corrugated Surfaces: K-Gaps and Enhanced Backscattering.- Black Hole Radiation: Can Vir...




Surface and Thin Film Analysis


Book Description

Surveying and comparing all techniques relevant for practical applications in surface and thin film analysis, this second edition of a bestseller is a vital guide to this hot topic in nano- and surface technology. This new book has been revised and updated and is divided into four parts - electron, ion, and photon detection, as well as scanning probe microscopy. New chapters have been added to cover such techniques as SNOM, FIM, atom probe (AP),and sum frequency generation (SFG). Appendices with a summary and comparison of techniques and a list of equipment suppliers make this book a rapid reference for materials scientists, analytical chemists, and those working in the biotechnological industry. From a Review of the First Edition (edited by Bubert and Jenett) "... a useful resource..." (Journal of the American Chemical Society)




Hard X-ray Photoelectron Spectroscopy (HAXPES)


Book Description

This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.




Nonlinear Spectroscopy


Book Description