Probiotics in Agroecosystem


Book Description

This book focuses on food security in sustainable agriculture and nutrient management. The study of plant probiotic microbes’ synergism using existing techniques has greatly improved our grasp of the structure and functioning of the plant microbiome. However, the function of plant probiotic microbes and their relation to plants’ health in the context of food security, soil nutrient management, human and plant health are largely unexplored. Compared to human probiotics, diverse types and millions of microbiota inhabit plants, forming multifaceted and complicated ecological societies that stimulate plant growth and health through their combined metabolic activities. From the perspective of sustainable cropping systems, observing plant probiotics can provide insights on how to stimulate and maintain plant productivity, along with host stress tolerance and recycling of soil nutrients. This book combines reviews and original research articles to highlight the latest advances in plant probiotics, their specificity, diversity, function, as well as plant microbiome management to improve plant growth and productivity, nutrient management and human health.




Probiotics and Plant Health


Book Description

This book primarily focuses on microbial colonization, its role in plant growth and nutrient cycling, mycorrhizae, and providing an overview of phytospheric microorganisms in sustainable crop systems. Despite the advances made in the study of plant-microbe synergism, the relation between microbes and plant health in the context of food security, soil nutrient management, human and plant health is still largely unexplored. Addressing that gap, the book presents reviews and original research articles that highlight the latest discoveries in plant probiotics, their specificity, diversity and function. Additional sections addressing nutrient management, human health, and plant microbiome management to improve plant productivity round out the coverage.




Microbial Probiotics for Agricultural Systems


Book Description

The book is a comprehensive compilation of the most recent advances in the practical approach of the use of microbial probiotics for agriculture. Unlike the rest of the publications about biofertilizers, this book bridges the gap between the lab studies (molecular, physiological, omics, etc.) and the agronomic application.




Handbook of Research on Microbial Remediation and Microbial Biotechnology for Sustainable Soil


Book Description

The introduction of contaminants, due to rapid urbanization and anthropogenic activities into the environment, causes distress to the physio-chemical systems including living organisms, which possibly is threatening the dynamics of nature as well as the soil biology by producing certain xenobiotics. Hence, there is an immediate global demand for the diminution of such contaminants and xenobiotics that can otherwise adversely affect the living organisms. Some toxic xenobiotics include synthetic organochlorides such as PAHs and some fractions of crude oil and coal. Over time, microbial remediation processes have been accelerated to produce better, more eco-friendly, and more biodegradable solutions for complete dissemination of these xenobiotic compounds. The advancements in microbiology and biotechnology led to the launch of microbial biotechnology as a separate area of research and contributed dramatically to the development of areas like agriculture, environment, biopharmaceutics, fermented foods, and more. The Handbook of Research on Microbial Remediation and Microbial Biotechnology for Sustainable Soil provides a detailed comprehensive account for microbial treatment technologies, bioremediation strategies, biotechnology, and the important microbial species involved in remediation. The chapters focus on recent developments in microbial biotechnology in the areas of agriculture and environment and the physiology, biochemistry, and the mechanisms of remediation along with a future outlook. This book is ideal for scientists, biologists, academicians, students, and researchers in the fields of life sciences, microbiology, environmental science, environmental engineering, biotechnology, agriculture, and health sciences.




Functionalized Nanomaterials Based Devices for Environmental Applications


Book Description

Environmental devices help in monitoring the collection of one or more measurements that are used to access the status of an environment. Today, environmental monitoring and analytical methods are among the most rapidly developing branches of analysis. The functionalization of nanomaterials in the field of environmental science has increasing importance with regards to the fabrication of devices. Functionalized nanomaterials reformulate new materials and advanced characteristics for improved application in comparison to old fashion materials and open an opportunity for the development of devices for introducing new technology and techniques for monitoring environmental challenges. The monitoring of these environmental challenges in advances have direct impact on health and sustainability. Functionalized nanomaterials have different mechanical, absorption, optical or electrical properties than original nanomaterials. In fact, major utilization of nanomaterials occurs in their functionalized forms, which are very different from the parent material. This handbook provides an overview of the different state-of-the-art materials, devices and environmental applications of functionalized nanomaterials. In addition, the information offers a platform for ongoing research in the field of environmental science and device fabrication. The main objective of this book is to cover the major areas focusing on the functionalization of nanomaterials, device fabrication along with different techniques and environmental applications of functionalized nanomaterials-based devices. This is an important reference source for materials scientists, engineers and environmental scientsts who are looking to increase their understanding of how functionalized nanomaterial-based devices are being used for environmental monitoring applications. Helps the reader to understand the basic principles of functionalization of nanomaterials Highlights fabrication and characterization methods for functionalized nanomaterials-based environmental monitoring devices Assesses the major challenges of creating devices using functionalized nanomaterials on a mass scale




Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants


Book Description

This book covers all aspects of deficiency of essential elements and excess of toxic ones in crop plants. The metal deficiency and toxicity are the two sides of same problem that are threatening to sustainable agricultural growth. The book presents prospective strategies for the management of elemental nutrition of crop plants. Chapters are arranged in a manner so as to develop a lucid picture of the topic beginning from basics to advanced research. The content is supplemented with flow charts and figures to make it convenient for readers to holistically grasp the concepts. It will be a value addition for students, research scholars and professionals in understanding the basics as well latest developments in the area of metal deficiency and excess in crop plants.




Microbial Interventions in Agriculture and Environment


Book Description

Microbial communities and their functions play a crucial role in the management of ecological, environmental and agricultural health on the Earth. Microorganisms are the key identified players for plant growth promotion, plant immunization, disease suppression, induced resistance and tolerance against stresses as the indicative parameters of improved crop productivity and sustainable soil health. Beneficial belowground microbial interactions with the rhizosphere help plants mitigate drought and salinity stresses and alleviate water stresses under the unfavorable environmental conditions in the native soils. Microorganisms that are inhabitants of such environmental conditions have potential solutions for them. There are potential microbial communities that can degrade xenobiotic compounds, pesticides and toxic industrial chemicals and help remediate even heavy metals, and thus they find enormous applications in environmental remediation. Microbes have developed intrinsic metabolic capabilities with specific metabolic networks while inhabiting under specific conditions for many generations and, so play a crucial role. The book Microbial Interventions in Agriculture and Environment is an effort to compile and present a great volume of authentic, high-quality, socially-viable, practical and implementable research and technological work on microbial implications. The whole content of the volume covers protocols, methodologies, applications, interactions, role and impact of research and development aspects on microbial interventions and technological outcomes in prospects of agricultural and environmental domain including crop production, plan-soil health management, food & nutrition, nutrient recycling, land reclamation, clean water systems and agro-waste management, biodegradation & bioremediation, biomass to bioenergy, sanitation and rural livelihood security. The covered topics and sub-topics of the microbial domain have high implications for the targeted and wide readership of researchers, students, faculty and scientists working on these areas along with the agri-activists, policymakers, environmentalists, advisors etc. in the Government, industries and non-government level for reference and knowledge generation.




Microbiomes and Plant Health


Book Description

Microbiomes and Plant Health: Panoply and Their Applications includes the most recent advances in phytobiome research. The book emphasizes the use of modern molecular tools such as smart delivery systems for microbiol inoculation, next-generation sequencing, and genome mapping. Chapters discuss a variety of applications and examples, including the sugarcane microbiome, rhizoengineering, nutrient recycling, sustainable agricultural practices and bio-potential of herbal medicinal plants. Written by a range of experts with real-world practical insights, this title is sure to be an essential read for plant and soil microbiologists, phytopathologists, agronomists, and researchers interested in sustainable forestry and agriculture practices. Offers readers a one-stop resource on the topic of plant and soil microbiome and their applications in plant disease, sustainable agriculture, soil health and medicinal plants Addresses the role of phytobiome to combat biotic and abiotic factors Emphasizes the use of modern molecular tools such as smart delivery systems for microbial inoculation, next-generation sequencing and genome mapping




Freshwater Pollution and Aquatic Ecosystems


Book Description

This new volume addresses the environmental impacts of pollution on freshwater aquatic ecosystems and presents sustainable management and remediation practices and advanced technology help to address the different types of pollutants. Freshwater Pollution and Aquatic Ecosystems: Environmental Impact and Sustainable Management considers the need for sustainable, efficient, and cost-effective tools and technologies to assess, monitor, and properly manage the increasing issues of aquatic pollution. It provides detailed accounts of the phenomena and mechanisms related to aquatic pollution and highlights the problems and threats associated with pollution contamination in freshwater. It provides useful insight into the sustainable and advanced pollution remediation technology adopted by different countries for the monitoring, assessment, and sustainable management of pollution. The chapters in the volume evaluate the sources of harmful pollutants, which include industrial effluents, sewage, and runoff from agricultural industries, which result in toxic microbes, organic waste, oils, and high load of nutrients. Unsustainable management practices of domestic sewage and indiscriminate use of chemical pesticides lead to the technological disturbance of aquatic biota. In addition to harming aquatic biota, these pollutants find their way into the human body through inhalation, ingestion, or absorption and finally tend to bio-accumulate in trophic levels of the food chain, which poses a major risk to human beings. This book will be a valuable resource for ecologists, environmentalists, scientists, and many others for their work in understanding and management of aquatic pollutants in freshwater biospheres.




Metals and Metalloids in Soil-Plant-Water Systems


Book Description

Metals and Metalloids in Soil-Plant-Water Systems: Phytophysiology and Remediation Techniques examines the impact of metal/metalloid contamination on the plant lifecycle, along with microbes present in soil. Highlighting uptake and translocation, the book also examines antioxidant, photosynthesis and growth characteristics of plants grown in metal contaminated soil. Beginning with an introduction to different sources of soil and water pollution, chapters assess the environmental cytotoxicity pollution impact on plants, as well as how the generation of reactive oxygen and nitrogen species in plant tissues is affected. The book also discusses various soil remediation methodologies, including the potential applications of metal oxidizing microbes and nanomaterials. This is an essential resource for researchers and students interested in plant physiology, soil science, environmental science and agriculture. Provides a comprehensive overview of metal and metalloids speciation, fractionation, bioavailability and transfer to plants Analyzes properties of plants grown with excess metals/metalloids in soils Highlights applications of biochar and other biostimulants for sustainable metal/metalloid remediation