Advanced Engineering Mathematics


Book Description







Advanced Engineering Mathematics, Student Solutions Manual and Study Guide, Volume 1: Chapters 1 - 12


Book Description

Student Solutions Manual to accompany Advanced Engineering Mathematics, 10e. The tenth edition of this bestselling text includes examples in more detail and more applied exercises; both changes are aimed at making the material more relevant and accessible to readers. Kreyszig introduces engineers and computer scientists to advanced math topics as they relate to practical problems. It goes into the following topics at great depth differential equations, partial differential equations, Fourier analysis, vector analysis, complex analysis, and linear algebra/differential equations.







Engineering Mathematics and Computing


Book Description

This book contains select papers presented at the 3rd International Conference on Engineering Mathematics and Computing (ICEMC 2020), held at the Haldia Institute of Technology, Purba Midnapur, West Bengal, India, from 5–7 February 2020. The book discusses new developments and advances in the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, hybrid intelligent systems, etc. The book, containing 19 chapters, is useful to the researchers, scholars, and practising engineers as well as graduate students of engineering and applied sciences.




Humble Pi


Book Description

#1 INTERNATIONAL BESTSELLER AN ADAM SAVAGE BOOK CLUB PICK The book-length answer to anyone who ever put their hand up in math class and asked, “When am I ever going to use this in the real world?” “Fun, informative, and relentlessly entertaining, Humble Pi is a charming and very readable guide to some of humanity's all-time greatest miscalculations—that also gives you permission to feel a little better about some of your own mistakes.” —Ryan North, author of How to Invent Everything Our whole world is built on math, from the code running a website to the equations enabling the design of skyscrapers and bridges. Most of the time this math works quietly behind the scenes . . . until it doesn’t. All sorts of seemingly innocuous mathematical mistakes can have significant consequences. Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean. Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun.




Topics in Algebra


Book Description

New edition includes extensive revisions of the material on finite groups and Galois Theory. New problems added throughout.




Engineering Mathematics


Book Description

This text presents the "how" & "why" of engineering mathematics, carefully balancing techniques with conceptual understanding. The objective throughout is to give students the confidence & skills to solve both simple & complex engineering.




College of Engineering


Book Description




Time-Varying Discrete Linear Systems


Book Description

Discrete-time systems arise as a matter of course in modelling biological or economic processes. For systems and control theory they are of major importance, particularly in connection with digital control applications. If sampling is performed in order to control periodic processes, almost periodic systems are obtained. This is a strong motivation to investigate the discrete-time systems with time-varying coefficients. This research monograph contains a study of discrete-time nodes, the discrete counterpart of the theory elaborated by Bart, Gohberg and Kaashoek for the continuous case, discrete-time Lyapunov and Riccati equations, discrete-time Hamiltonian systems in connection with input-output operators and associated Hankel and Toeplitz operators. All these tools aim to solve the problems of stabilization and attenuation of disturbances in the framework of H2- and H-control theory. The book is the first of its kind to be devoted to these topics and consists mainly of original, recently obtained results.