Problems And Solutions In Theoretical And Mathematical Physics - Volume Ii: Advanced Level (Third Edition)


Book Description

This book provides a comprehensive collection of problems together with their detailed solutions in the field of Theoretical and Mathematical Physics. All modern fields in Theoretical and Mathematical Physics are covered. It is the only book which covers all the new techniques and methods in theoretical and mathematical physics.Third edition updated with: Exercises in: Hilbert space theory, Lie groups, Matrix-valued differential forms, Bose-Fermi operators and string theory. All other chapters have been updated with new problems and materials. Most chapters contain an introduction to the subject discussed in the text.




Problems And Solutions In Theoretical And Mathematical Physics - Volume I: Introductory Level (Third Edition)


Book Description

This book provides a comprehensive collection of problems together with their detailed solutions in the field of Theoretical and Mathematical Physics. All modern fields in Theoretical and Mathematical Physics are covered. It is the only book which covers all the new techniques and methods in theoretical and mathematical physics.Third edition updated with: Exercises in: Hilbert space theory, Lie groups, Matrix-valued differential forms, Bose-Fermi operators and string theory. All other chapters have been updated with new problems and materials. Most chapters contain an introduction to the subject discussed in the text.




Problems & Solutions in Theoretical & Mathematical Physics: Introductory level


Book Description

This book provides a comprehensive collection of problems together with their detailed solutions in the field of Theoretical and Mathematical Physics. All modern fields in Theoretical and Mathematical Physics are covered. It is the only book which covers all the new techniques and methods in theoretical and mathematical physics.Third edition updated with: Exercises in: Hilbert space theory, Lie groups, Matrix-valued differential forms, Bose–Fermi operators and string theory. All other chapters have been updated with new problems and materials. Most chapters contain an introduction to the subject discussed in the text.




Problems And Solutions In Quantum Computing And Quantum Information (3rd Edition)


Book Description

Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton operator are included. The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained.




Problems And Solutions In Quantum Computing And Quantum Information (4th Edition)


Book Description

'This is a very useful book which helps to understand the concepts of quantum computing and quantum information by well presented problems and detailed solutions … It is highly recommended for beginners as well as for advanced researchers.'zbMATHQuantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest.This book presents a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. Each chapter gives a comprehensive introduction to the topics. All the important concepts and areas such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, teleportation, Bell states, Bell measurement, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, quantum games, number states and Bose operators, coherent states, squeezed states, Gaussian states, coherent Bell states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton operator are included. A chapter on quantum channels has also been added. Furthermore a chapter on boolean functions and quantum gates with mapping bits to qubits is included.The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained. Each chapter also contains supplementary problems to challenge the reader. Programming problems with Maxima and SymbolicC++ implementations are also provided.




Bose, Spin And Fermi Systems: Problems And Solutions


Book Description

This book provides a comprehensive collection of problems together with their detailed solutions for Bose, Spin, Fermi systems and also interacting systems. Supplementary problems are also provided. Exercises for representations of Lie groups and Lie algebras are also covered as well as computer algebra implementations. It is the only book which summarizes these topics from the quantum theory aspect in the form of exercises and solutions. The book is also self-contained.Both physicists and mathematicians will benefit from all the different techniques explained and worked out in detail.




Physics for Mathematicians


Book Description




Mathematical Physics


Book Description

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.




Equations of Mathematical Physics


Book Description

Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.




Mathematics for Physics


Book Description

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.