Problems And Solutions: Nonlinear Dynamics, Chaos And Fractals


Book Description

This book presents a collection of problems for nonlinear dynamics, chaos theory and fractals. Besides the solved problems, supplementary problems are also added. Each chapter contains an introduction with suitable definitions and explanations to tackle the problems.The material is self-contained, and the topics range in difficulty from elementary to advanced. While students can learn important principles and strategies required for problem solving, lecturers will also find this text useful, either as a supplement or text, since concepts and techniques are developed in the problems.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Problems and Solutions


Book Description

One-dimensional maps -- Higher-dimensional maps and complex maps -- Fractals




Chaos, Bifurcations And Fractals Around Us: A Brief Introduction


Book Description

During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.




An Introduction to Symbolic Dynamics and Coding


Book Description

Symbolic dynamics is a mature yet rapidly developing area of dynamical systems. It has established strong connections with many areas, including linear algebra, graph theory, probability, group theory, and the theory of computation, as well as data storage, statistical mechanics, and $C^*$-algebras. This Second Edition maintains the introductory character of the original 1995 edition as a general textbook on symbolic dynamics and its applications to coding. It is written at an elementary level and aimed at students, well-established researchers, and experts in mathematics, electrical engineering, and computer science. Topics are carefully developed and motivated with many illustrative examples. There are more than 500 exercises to test the reader's understanding. In addition to a chapter in the First Edition on advanced topics and a comprehensive bibliography, the Second Edition includes a detailed Addendum, with companion bibliography, describing major developments and new research directions since publication of the First Edition.




An Introduction to Dynamical Systems and Chaos


Book Description

The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.




Student Solutions Manual for Nonlinear Dynamics and Chaos, 2nd edition


Book Description

This official Student Solutions Manual includes solutions to the odd-numbered exercises featured in the second edition of Steven Strogatz's classic text Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. The textbook and accompanying Student Solutions Manual are aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. Complete with graphs and worked-out solutions, this manual demonstrates techniques for students to analyze differential equations, bifurcations, chaos, fractals, and other subjects Strogatz explores in his popular book.




From Fractals And Cellular Automata To Biology: Information As Order Hidden Within Chance


Book Description

The didactical level of exposition, together with many astonishing images and animations, accompanied by the related simple computer programming codes (in Python and POV-Ray languages) make this book an extremely and unique useful tool to test the power of algorithmic information in generating ordered structure models (2D and 3D) like regular geometric shapes, complex shapes like fractals and cellular automata, and biological systems as the organs of a living body. Informational biologists besides mathematicians and physicists of complexity may learn to test their own capabilities in programming and modelling ordered structures starting from random initial conditions at different scale of each system: from elementary particles, to biological systems, to galaxies and the whole universe. Moreover the philosophical comments comparing some aspects of modern information theory to the Aristotelian notion of 'form are very appealing also for the epistemologist and the philosopher involved in complexity matters.




Nonlinear Dynamics


Book Description

This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.




Chaotic Vibrations


Book Description

Translates new mathematical ideas in nonlinear dynamics and chaos into a language that engineers and scientists can understand, and gives specific examples and applications of chaotic dynamics in the physical world. Also describes how to perform both computer and physical experiments in chaotic dynamics. Topics cover Poincare maps, fractal dimensions and Lyapunov exponents, illustrating their use in specific physical examples. Includes an extensive guide to the literature, especially that relating to more mathematically oriented works; a glossary of chaotic dynamics terms; a list of computer experiments; and details for a demonstration experiment on chaotic vibrations.