Physics Of Semiconductors, The - Proceedings Of The Xxi International Conference (In 2 Volumes)


Book Description

The 21st conference proceedings continue the tradition of the ICPS series. The proceedings cover all aspects of semiconductor physics, including those related to materials, processing and devices. Plenary and invited speakers address areas of major interest.







Semiconductor Physics


Book Description

This handbook gives a complete and detailed survey of the field of semiconductor physics. It addresses every fundamental principle, the most important research topics and results, as well as conventional and emerging new areas of application. Additionally it provides all essential reference material on crystalline bulk, low-dimensional, and amorphous semiconductors, including valuable data on their optical, transport, and dynamic properties. This updated and extended second edition includes essential coverage of rapidly advancing areas in semiconductor physics, such as topological insulators, quantum optics, magnetic nanostructures and spintronic systems. Richly illustrated and authored by a duo of internationally acclaimed experts in solar energy and semiconductor physics, this handbook delivers in-depth treatment of the field, reflecting a combined experience spanning several decades as both researchers and educators. Offering a unique perspective on many issues, Semiconductor Physics is an invaluable reference for physicists, materials scientists and engineers throughout academia and industry.




HFI/NQI 2007


Book Description

This volume of proceedings includes new and original scientific results along with recent developments in instrumentation and methods, in invited and contributed papers. Researchers and graduate students interested in hyperfine interaction detected by nuclear radiation as well as nuclear quadrupole interactions detected by resonance methods in the areas of materials, biological and medical science will find this volume indispensable.




Microscopy of Semiconducting Materials 1987, Proceedings of the Institute of Physics Conference, Oxford University, April 1987


Book Description

The various forms of microscopy and related microanalytical techniques are making unique contributions to semiconductor research and development that underpin many important areas of microelectronics technology. Microscopy of Semiconducting Materials 1987 highlights the progress that is being made in semiconductor microscopy, primarily in electron probe methods as well as in light optical and ion scattering techniques. The book covers the state of the art, with sections on high resolution microscopy, epitaxial layers, quantum wells and superlattices, bulk gallium arsenide and other compounds, properties of dislocations, device silicon and dielectric structures, silicides and contacts, device testing, x-ray techniques, microanalysis, and advanced scanning microscopy techniques. Contributed by numerous international experts, this volume will be an indispensable guide to recent developments in semiconductor microscopy for all those who work in the field of semiconducting materials and research development.




Impurities in Semiconductors


Book Description

Although there is a good deal of research concerning semiconductor impurities available, most publications on the subject are very specialized and very theoretical. Until now, the field lacked a text that described the current experimental data, applications, and theory concerning impurities in semiconductor physics. Impurities in Semicondu




Microscopy of Semiconducting Materials 1987, Proceedings of the Institute of Physics Conference, Oxford University, April 1987


Book Description

The various forms of microscopy and related microanalytical techniques are making unique contributions to semiconductor research and development that underpin many important areas of microelectronics technology. Microscopy of Semiconducting Materials 1987 highlights the progress that is being made in semiconductor microscopy, primarily in electron probe methods as well as in light optical and ion scattering techniques. The book covers the state of the art, with sections on high resolution microscopy, epitaxial layers, quantum wells and superlattices, bulk gallium arsenide and other compounds, properties of dislocations, device silicon and dielectric structures, silicides and contacts, device testing, x-ray techniques, microanalysis, and advanced scanning microscopy techniques. Contributed by numerous international experts, this volume will be an indispensable guide to recent developments in semiconductor microscopy for all those who work in the field of semiconducting materials and research development.