Two-Dimensional Systems: Physics and New Devices


Book Description

In the series of International Winter Schools on New Developments in Solid State Physics, the fourth one was devoted to the subject: "Two Dimensional Systems: Physics and Devices". For the second time the pro ceedings of one of these Winter Schools appear as a volume in the Springer Series in Solid-State Sciences (the earlier proceedings were published as Vol. 53). The school was held in the castle of MauterndorfjSalzburg (Austria) February 24-28, 1986. These proceedings contain contributions ba:sed on the thirty invited lectures. The school was attended by 179 registered participants (40% students), who came from western European countries, the United States of America, Japan, the People's Republic of China and Poland. As far as the subjects are conterned, several papers deal with the growth and characterization of heterostructures. Dynamical RHEED tech niques are described as a tool for in situ studies of MBE growth mech anisms. Various growth techniques, including MBE, MOMBE, MOCVD and modifications of these, are discussed. The limiting fa.ctors for the carrier mobilities and the inftuence of the spacer thickness in single het erostructures of GaAs/GaAIAs seem to be understood and are no longer a matter of controversy. In addition, the growth of two fascinating systems, Si/SiGe and Hg _ Cd Te/CdTe, is discussed in detail




Science Abstracts


Book Description




Proceedings


Book Description




Mercury Cadmium Telluride


Book Description

Mercury cadmium telluride (MCT) is the third most well-regarded semiconductor after silicon and gallium arsenide and is the material of choice for use in infrared sensing and imaging. The reason for this is that MCT can be ‘tuned’ to the desired IR wavelength by varying the cadmium concentration. Mercury Cadmium Telluride: Growth, Properties and Applications provides both an introduction for newcomers, and a comprehensive review of this fascinating material. Part One discusses the history and current status of both bulk and epitaxial growth techniques, Part Two is concerned with the wide range of properties of MCT, and Part Three covers the various device types that have been developed using MCT. Each chapter opens with some historical background and theory before presenting current research. Coverage includes: Bulk growth and properties of MCT and CdZnTe for MCT epitaxial growth Liquid phase epitaxy (LPE) growth Metal-organic vapour phase epitaxy (MOVPE) Molecular beam epitaxy (MBE) Alternative substrates Mechanical, thermal and optical properties of MCT Defects, diffusion, doping and annealing Dry device processing Photoconductive and photovoltaic detectors Avalanche photodiode detectors Room-temperature IR detectors













Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications


Book Description

The field of narrow-gap II-VI materials is dominated by lhe compound mercury cadmium telluride, MCT or Hg1_ .. Cd .. Te. By varying the x value, material can be made to cover all the important infrared (lR) ranges of interest. It is probably true to say that MCT is the third most studied semiconductor after silicon and gallium arsenide. As current epitaxial layers of MCT are mainly grown on bulk CdTe family substrates these materials are included in this book, although strictly, of course, they are not 'narrow-gap'. This book is intended for readers who are either new to the field or are experienced workers in the field who need a comprehensive and up to date view of this rapidly expanding area. To satisfy the needs of the frrst group each chapter discusses the principles underlying each topic and some of the historical background before bringing the reader the most recent information available. For those currently in the field the book can be used as a collection of useful data, as a guide to the literature and as an overview of topics covering the wide range of work areas.




Optical Properties of Narrow-Gap Low-Dimensional Structures


Book Description

This volume contains the Proceedings of the NATO Advanced Research Workshop on "Optical Properties of Narrow-Gap Low-Dimensional Structures", held from July 29th to August 1st, 1986, in St. Andrews, Scotland, under the auspices of the NATO International Scientific Exchange Program. The workshop was not limited to optical properties of narrow-gap semiconductor structures (Part III). Sessions on, for example, the growth methods and characterization of III-V, II-VI, and IV-VI materials, discussed in Part II, were an integral part of the workshop. Considering the small masses of the carriers in narrow-gap low dimensional structures (LOS), in Part I the enhanced band mixing and magnetic field effects are explored in the context of the envelope function approximation. Optical nonlinearities and energy relaxation phenomena applied to the well-known systems of HgCdTe and GaAs/GaAIAs, respectively, are reviewed with comments on their extension to narrow gap LOS. The relevance of optical observations in quantum transport studies is illustrated in Part IV. A review of devices based on epitaxial narrow-gap materials defines a frame of reference for future ones based on two-dimensional narrow-gap semiconductors; in addition, an analysis of the physics of quantum well lasers provides a guide to relevant parameters for narrow-gap laser devices for the infrared (Part V). The roles and potentials of special techniques are explored in Part VI, with emphasis on hydrostatic pressure techniques, since this has a pronounced effect in small-mass, narrow-gap, non-parabolic structures.