Empirical Inference


Book Description

This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever. He started analyzing learning algorithms in the 1960s and he invented the first version of the generalized portrait algorithm. He later developed one of the most successful methods in machine learning, the support vector machine (SVM) – more than just an algorithm, this was a new approach to learning problems, pioneering the use of functional analysis and convex optimization in machine learning. Part I of this book contains three chapters describing and witnessing some of Vladimir Vapnik's contributions to science. In the first chapter, Léon Bottou discusses the seminal paper published in 1968 by Vapnik and Chervonenkis that lay the foundations of statistical learning theory, and the second chapter is an English-language translation of that original paper. In the third chapter, Alexey Chervonenkis presents a first-hand account of the early history of SVMs and valuable insights into the first steps in the development of the SVM in the framework of the generalised portrait method. The remaining chapters, by leading scientists in domains such as statistics, theoretical computer science, and mathematics, address substantial topics in the theory and practice of statistical learning theory, including SVMs and other kernel-based methods, boosting, PAC-Bayesian theory, online and transductive learning, loss functions, learnable function classes, notions of complexity for function classes, multitask learning, and hypothesis selection. These contributions include historical and context notes, short surveys, and comments on future research directions. This book will be of interest to researchers, engineers, and graduate students engaged with all aspects of statistical learning.




The Biophysics of Cell Membranes


Book Description

This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.




Biological Adhesive Systems


Book Description

J. Herbert Waite Like many graduate students before and after me I was There are so many species about which nothing is known, mesmerized by a proposition expressed years earlier by and the curse of not knowing is apathy. Krogh (1929) – namely that “for many problems there is Bioadhesion is the adaptation featured in this book, an animal on which it can be most conveniently studied”. and biology has many adhesive practitioners. Indeed, This opinion became known as the August Krogh Prin- every living organism is adhesively assembled in the ciple and remains much discussed to this day, particu- most exquisite way. Clearly, speci? c adhesion needs to larly among comparative physiologists (Krebs, 1975). be distinguished from the opportunistic variety. I think The words “problems” and “animal” are key because of speci? c adhesion as the adhesion between cells in the they highlight the two fundamental and complementary same tissue, whereas opportunistic adhesion might be the foci of biological research: (1) expertise about an animal adhesion between pathogenic microbes and the urinary (zoo-centric), which is mostly observational and (2) a tract, or between a slug and the garden path. If oppor- mechanistic analysis of some problem in the animal’s life nistic bioadhesion is our theme, then there are still many history or physiology (problem-centric), which is usually practitioners but the subset is somewhat more select than a hypothesis-driven investigation. before.




The Biology of Vines


Book Description

This 1992 book is a treatment of what was known about climbing plants, written by a group of experts.




Computer Methods in Biomechanics and Biomedical Engineering


Book Description

These papers are concerned with new advances and novel solutions in the areas of biofluids, image-guided surgery, tissue engineering and cardovascular mechanics, implant analysis, soft tissue mechanics, bone remodeling and motion analysis. The contents also feature a special section on dental materials, dental adhesives and orthodontic mechanics. This edition contains many examples, tables and figures, and together with the many references, provides the reader with invaluable information on the latest theoretical developments and applications.




Lung Development


Book Description

Knowledge about the mechanisms of lung development has been growing rapidly, especially with regard to cellular and molecular aspects of growth and differentiation. This authoritative international volume reviews key aspects of lung development in health and disease by providing a comprehensive review of the complex series of cellular and molecular interactions required for lung development. It covers such topics as pulmonary hypoplasia, effects of malnutrition, and pulmaonary angiogenesis. An indispensable reference for all those involved in studying or treating lung disease in neonates and children, the book offers a unique view of the development of this essential organ.




Plant Physics


Book Description

From Galileo, who used the hollow stalks of grass to demonstrate the idea that peripherally located construction materials provide most of the resistance to bending forces, to Leonardo da Vinci, whose illustrations of the parachute are alleged to be based on his study of the dandelion’s pappus and the maple tree’s samara, many of our greatest physicists, mathematicians, and engineers have learned much from studying plants. A symbiotic relationship between botany and the fields of physics, mathematics, engineering, and chemistry continues today, as is revealed in Plant Physics. The result of a long-term collaboration between plant evolutionary biologist Karl J. Niklas and physicist Hanns-Christof Spatz, Plant Physics presents a detailed account of the principles of classical physics, evolutionary theory, and plant biology in order to explain the complex interrelationships among plant form, function, environment, and evolutionary history. Covering a wide range of topics—from the development and evolution of the basic plant body and the ecology of aquatic unicellular plants to mathematical treatments of light attenuation through tree canopies and the movement of water through plants’ roots, stems, and leaves—Plant Physics is destined to inspire students and professionals alike to traverse disciplinary membranes.




Ecology of Lianas


Book Description

Lianas are woody vines that were the focus of intense study by early ecologists, such as Darwin, who devoted an entire book to the natural history of climbing plants. Over the past quarter century, there has been a resurgence in the study of lianas, and liana are again recognized as important components of many forests, particularly in the tropics. The increasing amount of research on lianas has resulted in a fundamentally deeper understanding of liana ecology, evolution, and life-history, as well as the myriad roles lianas play in forest dynamics and functioning. This book provides insight into the ecology and evolution of lianas, their anatomy, physiology, and natural history, their global abundance and distribution, and their wide-ranging effects on the myriad organisms that inhabit tropical and temperate forests.




Comparative Biomechanics


Book Description

The classic textbook on comparative biomechanics—revised and expanded Why do you switch from walking to running at a specific speed? Why do tall trees rarely blow over in high winds? And why does a spore ejected into air at seventy miles per hour travel only a fraction of an inch? Comparative Biomechanics is the first and only textbook that takes a comprehensive look at the mechanical aspects of life—covering animals and plants, structure and movement, and solids and fluids. An ideal entry point into the ways living creatures interact with their immediate physical world, this revised and updated edition examines how the forms and activities of animals and plants reflect the materials available to nature, considers rules for fluid flow and structural design, and explores how organisms contend with environmental forces. Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials—such as spider silk, jellyfish jelly, and muscle—and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas—including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics—and provides materials for exhibit designers at science museums. Problem sets at the ends of chapters Appendices cover basic background information Updated and expanded documentation and materials Revised figures and text Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimetics