Physics and Mechanics of New Materials and Their Applications


Book Description

This book presents 50 selected peer-reviewed contributions from the 10th Anniversary International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2021-2022 (23-27 May, 2022, Divnomorsk, Russia), focusing on processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystal structures, materials, and composites with unique properties. It presents nanotechnological design approaches, environmental-friendly processing techniques, and physicochemical as well as mechanical studies of advanced materials. The selected contributions describe recent progress in computational materials science methods and algorithms (in particular, finite-element and finite-difference modelling) applied to various technological, mechanical, and physical problems. The presented results are important for ongoing efforts concerning the theory, modelling, and testing of advanced materials. Other results are devoted to promising devices with higher accuracy, increased longevity, and greater potential to work effectively under critical temperatures, high pressure, and in aggressive environments.




Advanced Materials


Book Description

This book includes selected, peer-reviewed contributions from the 2018 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2018, held in Busan, South Korea, 9–11 August 2018. Focusing on manufacturing techniques, physics, mechanics, and applications of modern materials with special properties, it covers a broad spectrum of nanomaterials and structures, ferroelectrics and ferromagnetics, and other advanced materials and composites. The authors discuss approaches and methods in nanotechnology; newly developed, environmentally friendly piezoelectric techniques; and physical and mechanical studies of the microstructural and other properties of materials. Further, the book presents a range of original theoretical, experimental and computational methods and their application in the solution of various technological, mechanical and physical problems. Moreover, it highlights modern devices demonstrating high accuracy, longevity and the ability to operate over wide temperature and pressure ranges or in aggressive media. The developed devices show improved characteristics due to the use of advanced materials and composites, opening new horizons in the investigation of a variety of physical and mechanical processes and phenomena.




Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020)


Book Description

This book presents selected, peer-reviewed proceedings of the 2nd International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020), held in the city of Nha Trang, Vietnam, from 12 to 15 November, 2020. The purpose of the conference is to explore and ensure an understanding of the critical aspects contributing to sustainable development, especially materials, machines and methods. The contributions published in this book come from authors representing universities, research institutes and industrial companies, and reflect the results of a very broad spectrum of research, from micro- and nanoscale materials design and processing, to mechanical engineering technology in industry. Many of the contributions selected for these proceedings focus on materials modeling, eco-material processes and mechanical manufacturing.




Statistical Operator and Density Matrix


Book Description




Proceedings of the 2017 International Conference on "Physics, Mechanics of New Materials and Their Applications"


Book Description

Advanced materials and composites play a very important role in prospective directions of modern science and technology, defining the quick development of technique and industry. Intense chemical, physical, and mechanical R&D of modern numerical approaches and methods of mathematical modeling are necessary for development and improvement of material properties. These PHENMA 2017 Proceedings are devoted to the development and solution seeking of different actual problems into a framework of the pointed research directions. The book presents new results of internationally recognized scientific teams in the fields of materials science, physics, mechanics, manufacturing techniques and technologies of advanced materials, operating in diapasons from the nanometer level to the macroscopic level. The proposed theoretical and experimental methods are devoted to new approaches and methods for fabrication of nanomaterials, (environmentally-friendly) piezoelectrics, magnetic and other advanced materials and composites. In particular, this book presents new results of theoretical and experimental analysis of advanced materials and devices with previously given and improved characteristics, developed on the basis of methods of electric elasticity and physics of condensed matter. Our results cover numerical approaches (in particular, finite-element, finite-difference and boundary-element modeling) developed on the basis of original computer software, demonstrating new fascinating results for advanced materials and devices. The developed materials with special properties and novel devices demonstrate higher and improved properties in comparison with corresponding characteristics of the competitive publications. In the result, it gives a new knowledge, which is necessary for numerous applications. The developed theoretical, computational and test methods, manufactured experimental devices and setups possess significant possibilities and demonstrate improvements in the study of various structure-sensitive properties of solids and media. This collection presents selected reports of the 2017 International Conference on Physics, Mechanics of New Materials and Their Applications (PHENMA 2017, October 14-16, 2017, Jabalpur, India), http://phenma2017.math.sfedu.ru; http://phenma2017.iiitdmj.ac.in. This book is addressed to students, post-graduate students, scientists and engineers that are studying and developing a new generation of nanomaterials and nanostructures, piezoelectrics and magnetic materials, other promising materials, and also various devices, manufactured on their base and intended for numerous applications in various regions of science, technique and technology. This book presents new investigations and scientific results in condensed matter physics, materials science, physical and mechanical experiments, processing techniques and engineering of nanomaterials, piezoelectrics, ferromagnetics and other advanced materials and composites, numerical methods, and various promising applications (including industrial) and developed devices.




Advanced Ferroelectric And Piezoelectric Materials: With Improved Properties And Their Applications


Book Description

Discover the latest advances in ferroelectric and piezoelectric material sciences with this comprehensive monograph, divided into six chapters, each offering unique insights into the field.Chapter 1 delves into the manufacture and study of new ceramic materials, focusing on complex oxides of various metals (Aurivillius phases). The authors explore layered bismuth titanates and niobates, known for their high Curie temperature, and discuss how varying their chemical composition can lead to significant changes in their electrophysical properties. Chapter 2 explores the fascinating world of ferroelectrics — dielectrics with spontaneous polarization. Mathematical models and approaches of fractional calculus are used to understand the process of polarization switching in these materials, shedding light on the fractality of electrical responses. In Chapter 3, readers gain valuable insights into the inhomogeneous polarization process of polycrystalline ferroelectrics, a crucial stage in creating piezoceramic samples for energy converters. The authors present a comprehensive mathematical model that allows the determination of various characteristics, including dielectric and piezoelectric hysteresis loops and the effect of attenuation processes.Chapter 4 focuses on state-of-the-art piezoelectric energy harvesting, discussing theoretical, experimental, and computer modelling approaches. The authors discuss piezoelectric generators (PEGs) of different types (cantilever, stack and axis) and nonlinear effects arising at their operation. Chapter 5 presents expanded test and finite element models for cantilever-type and axial-type PEGs with active elements. The studies cover various structural and electric schemes of the PEGs with proof mass, bimorph and cylindrical piezoelectric elements, and excitation loads. Finally, Chapter 6 reviews some results in the last five years, obtained in modelling the vibration of devices from piezoactive materials, including five important effects: piezoelectric, flexoelectric, pyroelectric, piezomagnetic and flexomagnetic.As a diverse addition to the literature, this book is a relevant resource for researchers, engineers, and students seeking to expand their knowledge of cutting-edge developments in this exciting field.




Advanced Materials


Book Description

This book presents selected peer-reviewed contributions from the 2017 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2017 (Jabalpur, India, 14–16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical–mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.




Boundary Elements and other Mesh Reduction Methods XLV


Book Description

Advances in techniques that reduce or eliminate the type of meshes associated with finite elements or finite differences are reported in the papers that form this volume. As design, analysis and manufacture become more integrated, the chances are that software users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily within the aforementioned integrated process. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications of the method; this demonstrates its accuracy, robustness and ease of use. The range of applications still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. The included papers originate from the 45th conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM) and describe theoretical developments and new formulations, helping to expand the range of applications as well as the type of modelled materials in response to the requirements of contemporary industrial and professional environments.




Nanochemistry, Biotechnology, Nanomaterials, and Their Applications


Book Description

This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features selected peer-reviewed contributions from participants in the 5th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2017) held in Chernivtsi, Ukraine on August 23-26, 2017. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from energy storage to biomedical applications. This book's companion volume also addresses nanooptics, nanoplasmonics, and interface studies.




Advanced Materials


Book Description

Advanced materials are the basis of modern science and technology. This proceedings volume presents a broad spectrum of studies of novel materials covering their processing techniques, physics, mechanics, and applications. The book is concentrated on nanostructures, ferroelectric crystals, materials and composites, materials for solar cells and also polymeric composites. Nanotechnology approaches, modern piezoelectric techniques and also latest achievements in materials science, condensed matter physics, mechanics of deformable solids and numerical methods are presented. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media etc. The characteristics of materials and composites with improved properties opening new possibilities of various physical processes, in particular transmission and receipt of signals under water, are described.