Ludwig Boltzmann


Book Description

This book presents the life and personality, the scientific and philosophical work of Ludwig Boltzmann, one of the great scientists who marked the passage from 19th- to 20th-Century physics. His rich and tragic life, ending by suicide at the age of 62, is described in detail. A substantial part of the book is devoted to discussing his scientific and philosophical ideas and placing them in the context of the second half of the 19th century. The fact that Boltzmann was the man who did most to establish that there is a microscopic, atomic structure underlying macroscopic bodies is documented, as is Boltzmann's influence on modern physics, especially through the work of Planck on light quanta and of Einstein on Brownian motion. Boltzmann was the centre of a scientific upheaval, and he has been proved right on many crucial issues. He anticipated Kuhn's theory of scientific revolutions and proposed a theory of knowledge based on Darwin. His basic results, when properly understood, can also be stated as mathematical theorems. Some of these have been proved: others are still at the level of likely but unproven conjectures. The main text of this biography is written almost entirely without equations. Mathematical appendices deepen knowledge of some technical aspects of the subject.







Recent Developments in Gauge Theories


Book Description

Almost all theories of fundamental interactions are nowadays based on the gauge concept. Starting with the historical example of quantum electrodynamics, we have been led to the successful unified gauge theory of weak and electromagnetic interactions, and finally to a non abelian gauge theory of strong interactions with the notion of permanently confined quarks. The. early theoretical work on gauge theories was devoted to proofs of renormalizability, investigation of short distance behaviour, the discovery of asymptotic freedom, etc . . , aspects which were accessible to tools extrapolated from renormalised perturbation theory. The second phase of the subject is concerned with the problem of quark confinement which necessitates a non-perturbative understanding of gauge theories. This phase has so far been marked by the introduc tion of ideas from geometry, topology and statistical mechanics in particular the theory of phase transitions. The 1979 Cargese Institute on "Recent Developments on Gauge Theories" was devoted to a thorough discussion of these non-perturbative, global aspects of non-abelian gauge theories. In the lectures and seminars reproduced in this volume the reader wilf find detailed reports on most of the important developments of recent times on non perturbative gauge fields by some of the leading experts and innovators in this field. Aside from lectures on gauge fields proper, there were lectures on gauge field concepts in condensed matter physics and lectures by mathematicians on global aspects of the calculus of variations, its relation to geometry and topology, and related topics.




The Cambridge History of Medicine


Book Description

Against the backdrop of unprecedented concern for the future of health care, 'The Cambridge History of Medicine' surveys the rise of medicine in the West from classical times to the present. Covering both the social and scientific history of medicine, this volume traces the chronology of key developments and events.







Quantum Analogues: From Phase Transitions to Black Holes and Cosmology


Book Description

Recently, analogies between laboratory physics (e.g. quantum optics and condensed matter) and gravitational/cosmological phenomena such as black holes have attracted an increasing interest. This book contains a series of selected lectures devoted to this new and rapidly developing field. Various analogies connecting (apparently) different areas in physics are presented in order to bridge the gap between them and to provide an alternative point of view.







Nuclear Techniques for Cultural Heritage Research


Book Description

"Scientific studies of art and archaeology are a necessary complement to cultural heritage conservation, preservation and investigation. Nuclear techniques, such as neutron activation analysis, X ray fluorescence analysis and ion beam analysis, have a potential for non-destructive and reliable investigation of precious artefacts and materials, such as ceramics, stone, metal, and pigments from paintings. Such information can be helpful in repair of damaged objects, in identification of fraudulent artefacts and in the appropriate categorization of historic artefacts."--P. [4] of cover.