Formal Power Series and Algebraic Combinatorics


Book Description

This book contains the extended abstracts presented at the 12th International Conference on Power Series and Algebraic Combinatorics (FPSAC '00) that took place at Moscow State University, June 26-30, 2000. These proceedings cover the most recent trends in algebraic and bijective combinatorics, including classical combinatorics, combinatorial computer algebra, combinatorial identities, combinatorics of classical groups, Lie algebra and quantum groups, enumeration, symmetric functions, young tableaux etc...




The Arnold-Gelfand Mathematical Seminars


Book Description

It is very tempting but a little bit dangerous to compare the style of two great mathematicians or of their schools. I think that it would be better to compare papers from both schools dedicated to one area, geometry and to leave conclusions to a reader of this volume. The collaboration of these two schools is not new. One of the best mathematics journals Functional Analysis and its Applications had I.M. Gelfand as its chief editor and V.I. Arnold as vice-chief editor. Appearances in one issue of the journal presenting remarkable papers from seminars of Arnold and Gelfand always left a strong impact on all of mathematics. We hope that this volume will have a similar impact. Papers from Arnold's seminar are devoted to three important directions developed by his school: Symplectic Geometry (F. Lalonde and D. McDuff), Theory of Singularities and its applications (F. Aicardi, I. Bogaevski, M. Kazarian), Geometry of Curves and Manifolds (S. Anisov, V. Chekanov, L. Guieu, E. Mourre and V. Ovsienko, S. Gusein-Zade and S. Natanzon). A little bit outside of these areas is a very interesting paper by M. Karoubi Produit cyclique d'espaces et operations de Steenrod.




Index of Conference Proceedings


Book Description




Mathematics and Computer Science II


Book Description

This is the second volume in a series of innovative proceedings entirely devoted to the connections between mathematics and computer science. Here mathematics and computer science are directly confronted and joined to tackle intricate problems in computer science with deep and innovative mathematical approaches. The book serves as an outstanding tool and a main information source for a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers. It provides an overview of the current questions in computer science and the related modern and powerful mathematical methods. The range of applications is very wide and reaches beyond computer science.




Polygons, Polyominoes and Polycubes


Book Description

The problem of counting the number of self-avoiding polygons on a square grid, - therbytheirperimeterortheirenclosedarea,is aproblemthatis soeasytostate that, at ?rst sight, it seems surprising that it hasn’t been solved. It is however perhaps the simplest member of a large class of such problems that have resisted all attempts at their exact solution. These are all problems that are easy to state and look as if they should be solvable. They include percolation, in its various forms, the Ising model of ferromagnetism, polyomino enumeration, Potts models and many others. These models are of intrinsic interest to mathematicians and mathematical physicists, but can also be applied to many other areas, including economics, the social sciences, the biological sciences and even to traf?c models. It is the widespread applicab- ity of these models to interesting phenomena that makes them so deserving of our attention. Here however we restrict our attention to the mathematical aspects. Here we are concerned with collecting together most of what is known about polygons, and the closely related problems of polyominoes. We describe what is known, taking care to distinguish between what has been proved, and what is c- tainlytrue,but has notbeenproved. Theearlierchaptersfocusonwhatis knownand on why the problems have not been solved, culminating in a proof of unsolvability, in a certain sense. The next chapters describe a range of numerical and theoretical methods and tools for extracting as much information about the problem as possible, in some cases permittingexactconjecturesto be made.




Schubert Calculus and Its Applications in Combinatorics and Representation Theory


Book Description

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.




Analytic Combinatorics in Several Variables


Book Description

Introduces the theory of multivariate generating functions, with new exercises, computational examples, and a conceptual overview chapter.




Counting with Symmetric Functions


Book Description

This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enumeration theorem using symmetric functions. Chapters 7 and 8 are more specialized than the preceding ones, covering consecutive pattern matches in permutations, words, cycles, and alternating permutations and introducing the reciprocity method as a way to define ring homomorphisms with desirable properties. Counting with Symmetric Functions will appeal to graduate students and researchers in mathematics or related subjects who are interested in counting methods, generating functions, or symmetric functions. The unique approach taken and results and exercises explored by the authors make it an important contribution to the mathematical literature.




Combinatorics of Set Partitions


Book Description

Focusing on a very active area of mathematical research in the last decade, Combinatorics of Set Partitions presents methods used in the combinatorics of pattern avoidance and pattern enumeration in set partitions. Designed for students and researchers in discrete mathematics, the book is a one-stop reference on the results and research activities of set partitions from 1500 A.D. to today. Each chapter gives historical perspectives and contrasts different approaches, including generating functions, kernel method, block decomposition method, generating tree, and Wilf equivalences. Methods and definitions are illustrated with worked examples and MapleTM code. End-of-chapter problems often draw on data from published papers and the author’s extensive research in this field. The text also explores research directions that extend the results discussed. C++ programs and output tables are listed in the appendices and available for download on the author’s web page.




Quadratic and Higher Degree Forms


Book Description

In the last decade, the areas of quadratic and higher degree forms have witnessed dramatic advances. This volume is an outgrowth of three seminal conferences on these topics held in 2009, two at the University of Florida and one at the Arizona Winter School. The volume also includes papers from the two focused weeks on quadratic forms and integral lattices at the University of Florida in 2010.Topics discussed include the links between quadratic forms and automorphic forms, representation of integers and forms by quadratic forms, connections between quadratic forms and lattices, and algorithms for quaternion algebras and quadratic forms. The book will be of interest to graduate students and mathematicians wishing to study quadratic and higher degree forms, as well as to established researchers in these areas. Quadratic and Higher Degree Forms contains research and semi-expository papers that stem from the presentations at conferences at the University of Florida as well as survey lectures on quadratic forms based on the instructional workshop for graduate students held at the Arizona Winter School. The survey papers in the volume provide an excellent introduction to various aspects of the theory of quadratic forms starting from the basic concepts and provide a glimpse of some of the exciting questions currently being investigated. The research and expository papers present the latest advances on quadratic and higher degree forms and their connections with various branches of mathematics.