Proceedings of the 7th International Conference on Advances in Energy Research


Book Description

This book presents selected papers from the 7th International Conference on Advances in Energy Research (ICAER 2019), providing a comprehensive coverage encompassing all fields and aspects of energy in terms of generation, storage, and distribution. Themes such as optimization of energy systems, energy efficiency, economics, management, and policy, and the interlinkages between energy and environment are included. The contents of this book will be of use to researchers and policy makers alike.




Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia


Book Description

This book gathers the proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM), held on November 2021, a virtual conference organized in Melaka, Malaysia. It focuses on two relatively broad areas—advanced materials and sustainable energy—and a diverse range of subtopics: Advanced materials and related technologies: liquid crystals, semiconductors, superconductors, optics, lasers, sensors, mesoporous materials, nanomaterials, smart ferrous materials, amorphous materials, crystalline materials, biomaterials, metamaterials, composites, polymers, design, analysis, development, manufacturing, processing and testing for advanced materials. Sustainable energy and related technologies: energy management, storage, conservation, industrial energy efficiency, energy-efficient buildings, energy-efficient traffic systems, energy distribution, energy modeling, hybrid and integrated energy systems, fossil energy, nuclear energy, bioenergy, biogas, biomass geothermal power, non-fossil energies, wind energy, hydropower, solar photovoltaic, fuel cells, electrification, and electrical power systems and controls.




Proceedings of the 7th International Conference on Discrete Element Methods


Book Description

This book presents the latest advances in Discrete Element Methods (DEM) and technology. It is the proceeding of 7th International Conference on DEM which was held at Dalian University of Technology on August 1 - 4, 2016. The subject of this book are the DEM and related computational techniques such as DDA, FEM/DEM, molecular dynamics, SPH, Meshless methods, etc., which are the main computational methods for modeling discontinua. In comparison to continua which have been already studied for a long time, the research of discontinua is relatively new, but increases dramatically in recent years and has already become an important field. This book will benefit researchers and scientists from the academic fields of physics, engineering and applied mathematics, as well as from industry and national laboratories who are interested in the DEM.







Proceedings of the 2014 Energy Materials Conference


Book Description

This DVD contains a collection of papers presented at EnergyMaterials 2014, a conference organized jointly by The ChineseSociety for Metals (CSM) and The Minerals, Metals & MaterialsSociety (TMS), and held November 4-6, 2014, in Xi’an, ShaanxiProvince, China. With the rapid growth of the world’s energyproduction and consumption, the important role of energy materialshas achieved worldwide acknowledgement. Material producers andconsumers constantly seek the possibility of increasing strength,improving fabrication and service performance, simplifyingprocesses, and reducing costs. Energy Materials 2014 has provided aforum for academics, researchers, and engineers around the world toexchange state-of-the-art development and information on issuesrelated to energy materials. The papers on the DVD are organized around the followingtopics: Materials for Coal-Based Systems Materials for Gas Turbine Systems Materials for Nuclear Systems Materials for Oil and Gas Materials for Pressure Vessels







Thermal Energy Storage


Book Description

During the last two decades many research and development activities related to energy have concentrated on efficient energy use and energy savings and conservation. In this regard, Thermal Energy Storage (TES) systems can play an important role, as they provide great potential for facilitating energy savings and reducing environmental impact. Thermal storage has received increasing interest in recent years in terms of its applications, and the enormous potential it offers both for more effective use of thermal equipment and for economic, large-scale energy substitutions. Indeed, TES appears to provide one of the most advantageous solutions for correcting the mismatch that often occurs between the supply and demand of energy. Despite this increase in attention, no book is currently available which comprehensively covers TES. Presenting contributions from prominent researchers and scientists, this book is primarily concerned with TES systems and their applications. It begins with a brief summary of general aspects of thermodynamics, fluid mechanics and heat transfer, and then goes on to discuss energy storage technologies, environmental aspects of TES, energy and exergy analyses, and practical applications. Furthermore, this book provides coverage of the theoretical, experimental and numerical techniques employed in the field of thermal storage. Numerous case studies and illustrative examples are included throughout. Some of the unique features of this book include: * State-of-the art descriptions of many facets of TES systems and applications * In-depth coverage of exergy analysis and thermodynamic optimization of TES systems * Extensive new material on TES technologies, including advances due to innovations in sensible- and latent-energy storage * Key chapters on environmental issues, sustainable development and energy savings * Extensive coverage of practical aspects of the design, evaluation, selection and implementation of TES systems * Wide coverage of TES-system modelling, ranging in level from elementary to advanced * Abundant design examples, case studies and references In short, this book forms a valuable reference resource for practicing engineers and researchers, and a research-oriented text book for advanced undergraduate and graduate students of various engineering disciplines. Instructors will find that its breadth and structure make it an ideal core text for TES and related courses.




Intelligent Solutions for Sustainable Power Grids


Book Description

In the environment of energy systems, the effective utilization of both conventional and renewable sources poses a major challenge. The integration of microgrid systems, crucial for harnessing energy from distributed sources, demands intricate solutions due to the inherent intermittency of these sources. Academic scholars engaged in power system research find themselves at the forefront of addressing issues such as energy source estimation, coordination in dynamic environments, and the effective utilization of artificial intelligence (AI) techniques. Intelligent Solutions for Sustainable Power Grids focuses on emerging research areas, this book addresses the uncertainty of renewable energy sources, employs state-of-the-art forecasting techniques, and explores the application of AI techniques for enhanced power system operations. From economic aspects to the digitalization of power systems, the book provides a holistic approach. Tailored for undergraduate and postgraduate students as well as seasoned researchers, it offers a roadmap to navigate the intricate landscape of modern power systems. Dive into a wealth of knowledge encompassing smart energy systems, renewable energy integration, stability analysis of microgrids, power quality enhancement, and much more. This book is not just a guide; it is the solution to the pressing challenges in the dynamic field of energy systems.




Photovoltaics for Space


Book Description

PV has traditionally been used for electric power in space. Solar panels on spacecraft are usually the sole source of power to run the sensors, active heating and cooling, and communications. Photovoltaics for Space: Key Issues, Missions and Alternative Technologies provides an overview of the challenges to efficiently produce solar power in near-Earth space and beyond: the materials and device architectures that have been developed to surmount these environmental and mission-specific barriers. The book is organized in four sections consisting of detailed introductory and background content as well as a collection of in-depth space environment, materials processing, technology, and mission overviews by international experts. This book will detail how to design and optimize a space power system's performance for power-to-weight ratio, effectiveness at end of operational life (EOL) compared to beginning of operational life (BOL), and specific mission objectives and goals. This book outlines the knowledge required for practitioners and advanced students interested in learning about the background, materials, devices, environmental challenges, missions, and future for photovoltaics for space exploration. - Provides an update to state-of-the-art and emerging solar cell technologies - Features comprehensive coverage of solar cells for space exploration and materials/device technology options available - Explains the extreme conditions and mission challenges to overcome when using photovoltaics in space




AI Approaches to Smart and Sustainable Power Systems


Book Description

Today, the global power demand relies on a delicate balance between conventional and renewable energy systems, necessitating both efficient power generation and the effective utilization of these energy resources through appropriate energy storage solutions. Integrating microgrid systems into the utility grid has become a critical facet of modern power systems. The intermittent and unpredictable nature of these energy sources poses a formidable challenge for academic scholars and researchers. This compels them to explore under-investigated areas, including energy source estimation, storage elements, load pattern prediction, coordination among distributed sources, and the development of energy management algorithms for precise and efficient control. AI Approaches to Smart and Sustainable Power Systems tackles these issues using cutting-edge AI techniques. It examines the most effective methods to optimize voltage, frequency, power, fault diagnosis, component health, and overall power system quality and reliability. AI empowers predictive and preventive maintenance for a sustainable energy future. The book focuses on emerging research areas, including renewable energy, power flow calculations, demand scheduling, real-time performance validation, and AI integration into modern power systems, accompanied by insightful case studies.