Proceedings of the International Field Exploration and Development Conference 2021


Book Description

This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 11th International Field Exploration and Development Conference (IFEDC 2021). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.







The SE Asian Gateway


Book Description

Collision between Australia and SE Asia began in the Early Miocene and reduced the former wide ocean between them to a complex passage which connects the Pacific and Indian Oceans. Today, the Indonesian Throughflow passes through this gateway and plays an important role in global thermohaline flow. The surrounding region contains the maximum global diversity for many marine and terrestrial organisms. Reconstruction of this geologically complex region is essential for understanding its role in oceanic and atmospheric circulation, climate impacts, and the origin of its biodiversity. The papers in this volume discuss the Palaeozoic to Cenozoic geological background to Australia and SE Asia collision. They provide the background for accounts of the modern Indonesian Throughflow and oceanographic changes since the Neogene, and consider aspects of the region's climate history--




Applied Petroleum Geomechanics


Book Description

Applied Petroleum Geomechanics provides a bridge between theory and practice as a daily use reference that contains direct industry applications. Going beyond the basic fundamentals of rock properties, this guide covers critical field and lab tests, along with interpretations from actual drilling operations and worldwide case studies, including abnormal formation pressures from many major petroleum basins. Rounding out with borehole stability solutions and the geomechanics surrounding hydraulic fracturing and unconventional reservoirs, this comprehensive resource gives petroleum engineers a much-needed guide on how to tackle today's advanced oil and gas operations. - Presents methods in formation evaluation and the most recent advancements in the area, including tools, techniques and success stories - Bridges the gap between theory of rock mechanics and practical oil and gas applications - Helps readers understand pore pressure calculations and predictions that are critical to shale and hydraulic activity




Sediment Compaction and Applications in Petroleum Geoscience


Book Description

This book discusses how sediments compact with depth and applications of the compaction trends. Porosity reduction in sediment conveniently indicates the degree of sediments compacted after deposition. Published empirical curves- the compaction curves- are depth-wise porosity variation through which change in pore spaces from sediment surface to deeper depths e.g. up to 6 km can be delineated. Porosity is derived from well logs. Compaction curves, referred to as the Normal Porosity Profile of shales, sandstones and shale bearing sandstones of different models are reviewed along with the different mechanical and chemical compaction processes. These compaction models reveals how porosity reduces depth-wise and the probable reason for anomalous zones. Deviation from these normal compaction trends may indicate abnormal pressure scenarios: either over- or under pressure. We highlight global examples of abnormal pressure scenarios along with the different primary- and secondary mechanisms. Well logs and cores being the direct measurements of porosity, well log is the only cost-effective way to determine porosity of subsurface rocks. Certain well logs can detect overpressure and the preference of one log above the other helps reduce the uncertainty. Apart from delineation of under-compacted zones by comparing the modeled- with the actual compaction, porosity data can also estimate erosion.







Mass-transport Deposits in Deepwater Settings


Book Description

Historically, submarine-mass failures or mass-transport deposits have been a focus of increasingly intense investigation by academic institutions particularly during the last decade, though they received much less attention by geoscientists in the energy industry. With recent interest in expanding petroleum exploration and production into deeper water-depths globally and more widespread availability of high-quality data sets, mass-transport deposits are now recognized as a major component of most deep-water settings. This recognition has lead to the realization that many aspects of these deposits are still unknown or poorly understood. This volume contains twenty-three papers that address a number of topics critical to further understanding mass-transport deposits. These topics include general overviews of these deposits, depositional settings on the seafloor and in the near-subsurface interval, geohazard concerns, descriptive outcrops, integrated outcrop and seismic data/seismic forward modeling, petroleum reservoirs, and case studies on several associated topics. This volume will appeal to a broad cross section of geoscientists and geotechnical engineers, who are interested in this rapidly expanding field. The selection of papers in this volume reflects a growing trend towards a more diverse blend of disciplines and topics, covered in the study of mass-transport deposits.