Proceedings: Creep & Fracture in High Temperature Components


Book Description

A compendium of European and worldwide research investigating creep, fatigue and failure behaviors in metals under high-temperature and other service stresses. It helps set the standards for coordinating creep data and for maintaining defect-free quality in high-temperature metals and metal-based weldments.




Proceedings of the 2014 Energy Materials Conference


Book Description

This DVD contains a collection of papers presented at EnergyMaterials 2014, a conference organized jointly by The ChineseSociety for Metals (CSM) and The Minerals, Metals & MaterialsSociety (TMS), and held November 4-6, 2014, in Xi’an, ShaanxiProvince, China. With the rapid growth of the world’s energyproduction and consumption, the important role of energy materialshas achieved worldwide acknowledgement. Material producers andconsumers constantly seek the possibility of increasing strength,improving fabrication and service performance, simplifyingprocesses, and reducing costs. Energy Materials 2014 has provided aforum for academics, researchers, and engineers around the world toexchange state-of-the-art development and information on issuesrelated to energy materials. The papers on the DVD are organized around the followingtopics: Materials for Coal-Based Systems Materials for Gas Turbine Systems Materials for Nuclear Systems Materials for Oil and Gas Materials for Pressure Vessels




Coal Power Plant Materials and Life Assessment


Book Description

Due to their continuing role in electricity generation, it is important that coal power plants operate as efficiently and cleanly as possible. Coal Power Plant Materials and Life Assessment reviews the materials used in coal plants, and how they can be assessed and managed to optimize plant operation. Part I considers the structural alloys used in coal plants. Part II then reviews performance modelling and life assessment techniques, explains the inspection and life-management approaches that can be adopted to optimize long term plant operation, and considers the technical and economic issues involved in meeting variable energy demands. - Summarizes key research on coal-fired power plant materials, their behavior under operational loads, and approaches to life assessment and defect management - Details the range of structural alloys used in coal power plants, and the life assessment techniques applicable to defect-free components under operational loads - Reviews the life assessment techniques applicable to components containing defects and the approaches that can be adopted to optimize plant operation and new plant and component design







Energy Materials 2014


Book Description




Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants


Book Description

Reactor Pressure Vessels (RPVs) contain the fuel and therefore the reaction at the heart of nuclear power plants. They are a life-determining structural component: if they suffer serious damage, the continued operation of the plant is in jeopardy. This book critically reviews irradiation embrittlement, the main degradation mechanism affecting RPV steels, and mitigation routes for managing the RPV lifetime. Part I reviews RPV design and fabrication in different countries, with an emphasis on the materials required, their important properties, and manufacturing technologies. Part II then considers RVP embrittlement in operational nuclear power plants using different reactors. Chapters are devoted to embrittlement in light-water reactors, including WWER-type reactors and Magnox reactors. Finally, Part III presents techniques for studying embrittlement, including irradiation simulation techniques, microstructural characterisation techniques, and probabilistic fracture mechanics. Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants provides a thorough review of an issue that is central to the safety of nuclear power generation. The book includes contributions from an international team of experts, and will be a useful resource for nuclear plant operators and managers, relevant regulatory and safety bodies, nuclear metallurgists and other academics in this field - Discusses reactor pressure vessel (RPV) design and the effect irradiation embrittlement can have, the main degradation mechanism affecting RPVs - Examines embrittlement processes in RPVs in different reactor types, as well as techniques for studying RPV embrittlement




Proceedings of the 8th International Conference on Pressure Vessel Technology, ICPVT-8: Fatigue


Book Description

Two volumes' worth of papers from the July 1996 conference comprise some 100 technical papers. Among the topics: fatigue and fatigue-creep analyses; nondestructive evaluation techniques and development; material properties and performance under various environmental conditions; experimental and nume




Advances in Materials Technology for Fossil Power Plants


Book Description

Conference proceedings covering the latest technology developments for fossil fuel power plants, including nickel-based alloys for advanced ultrasupercritical power plants, materials for turbines, oxidation and corrosion, welding and weld performance, new alloys concepts, and creep and general topics.







Materials for Nuclear Plants


Book Description

The clamor for non-carbon dioxide emitting energy production has directly impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, materials modeling and advanced materials testing will be described including design code considerations and non-destructive evaluation concepts. Including models for simple system dynamic problems and knowledge of current nuclear power plants in operation, Materials for Nuclear Plants: From Safe Design to Residual Life Assessments is ideal for students studying postgraduate courses in Nuclear Engineering. Designers on courses for code development, such as ASME or ISO and nuclear authorities will also find this a useful reference.