Proceedings of Second International Conference in Mechanical and Energy Technology


Book Description

This book presents selected peer-reviewed papers from the International Conference on Mechanical and Energy Technologies, which was held on October 28–29, 2021, at Galgotias College of Engineering and Technology, Greater Noida, India. The book reports on the latest developments in the field of mechanical and energy technology in contributions prepared by experts from academia and industry. The broad range of topics covered includes aerodynamics and fluid mechanics, artificial intelligence, nonmaterial and nonmanufacturing technologies, rapid manufacturing technologies and prototyping, remanufacturing, renewable energies technologies, metrology and computer-aided inspection, etc. Accordingly, the book offers a valuable resource for researchers in various fields, especially mechanical and industrial engineering, and energy technologies.




Heat and Mass Transfer in the Melting of Frost


Book Description

This Brief is aimed at engineers and researchers involved in the refrigeration industry: specifically, those interested in energy utilization and system efficiency. The book presents what the authors believe is the first comprehensive frost melting study involving all aspects of heat and mass transfer. The volume’s description of in-plane and normal digital images of frost growth and melting is also unique in the field, and the digital analysis technique offers an advantage over invasive measurement methods. The scope of book’s coverage includes modeling and experimentation for the frost formation and melting processes. The key sub-specialties to which the book are aimed include refrigeration system analysis and design, coupled heat and mass transfer, and phase-change processes.




Design of Thermal Energy Systems


Book Description

Design of Thermal Energy Systems Pradip Majumdar, Northern Illinois University, USA A comprehensive introduction to the design and analysis of thermal energy systems Design of Thermal Energy Systems covers the fundamentals and applications in thermal energy systems and components, including conventional power generation and cooling systems, renewable energy systems, heat recovery systems, heat sinks and thermal management. Practical examples are used throughout and are drawn from solar energy systems, fuel cell and battery thermal management, electrical and electronics cooling, engine exhaust heat and emissions, and manufacturing processes. Recent research topics such as steady and unsteady state simulation and optimization methods are also included. Key features: Provides a comprehensive introduction to the design and analysis of thermal energy systems, covering fundamentals and applications. Includes a wide range of industrial application problems and worked out example problems. Applies thermal analysis techniques to generate design specification and ratings. Demonstrates how to design thermal systems and components to meet engineering specifications. Considers alternative options and allows for the estimation of cost and feasibility of thermal systems. Accompanied by a website including software for design and analysis, a solutions manual, and presentation files with PowerPoint slides. The book is essential reading for: practicing engineers in energy and power industries; consulting engineers in mechanical, electrical and chemical engineering; and senior undergraduate and graduate engineering students.




Advances in Heat Transfer


Book Description

Advances in Heat Transfer, Volume 54 in this comprehensive series, highlights new advances in the field, with this new volume presenting interesting chapter written by an international board of authors. Updates to this new release include chapters on Thermal Convection Studies at the University of Minnesota and Turbulent passive scalar transport in smooth wall-bounded flows: recent advances. - Includes the authority and expertise of leading contributors from an international board of authors - Presents the latest release in Advances in Heat Transfer series - Provides a comprehensive approach, highlighting new advances in the field




A multifactorial analysis of thermal management concepts for high-voltage battery systems


Book Description

This research presents a method for efficiently and reproducibly comparing diverse battery thermal management concepts in an early stage of development to assist in battery system design. The basis of this method is a hardware-based thermal simulation model of a prismatic Lithium-Ion battery, called the Smart Battery Cell (SBC). By eliminating the active chemistry, enhanced reproducibility of the experimental boundary conditions and increased efficiency of the experimental trials are realized. Additionally, safety risks associated with Lithium-Ion cells are eliminated, making the use of the SBC possible with thermal management systems in an early state of developed and without costly safety infrastructure. The integration of thermocouples leaves the thermal contact surface undisturbed, allowing the SBC to be integrated into diverse thermal management systems.




Single- and Two-Phase Flow Pressure Drop and Heat Transfer in Tubes


Book Description

The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The author further presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.




Natural Convective Heat Transfer from Short Inclined Cylinders


Book Description

Natural Convective Heat Transfer from Short Inclined Cylinders examines a heat transfer situation of significant, practical importance not adequately dealt with in existing textbooks or in any widely available review papers. Specifically, the book introduces the reader to recent studies of natural convection from short cylinders mounted on a flat insulated base where there is an “exposed” upper surface. The author considers the effects of the cylinder cross-sectional shape, the cylinder inclination angle, and the length-to-cross sectional size of the cylinder. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed. This book is ideal for professionals involved with thermal management and related systems, researchers, and graduate students in the field of natural convective heat transfer, instructors in graduate level courses in convective heat transfer.




Heat Transfer Enhancement with Nanofluids


Book Description

Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from




Encyclopedia Of Thermal Packaging, Set 2: Thermal Packaging Tools (A 4-volume Set)


Book Description

remove This Encyclopedia comes in 3 sets. To check out Set 1 and Set 3, please visit Set 1: Thermal Packaging Techniques and Set 3: Thermal Packaging Applications /remove Thermal and mechanical packaging - the enabling technologies for the physical implementation of electronic systems - are responsible for much of the progress in miniaturization, reliability, and functional density achieved by electronic, microelectronic, and nanoelectronic products during the past 50 years. The inherent inefficiency of electronic devices and their sensitivity to heat have placed thermal packaging on the critical path of nearly every product development effort in traditional, as well as emerging, electronic product categories.Successful thermal packaging is the key differentiator in electronic products, as diverse as supercomputers and cell phones, and continues to be of pivotal importance in the refinement of traditional products and in the development of products for new applications. The Encyclopedia of Thermal Packaging, compiled in four multi-volume sets (Set 1: Thermal Packaging Techniques, Set 2: Thermal Packaging Tools, Set 3: Thermal Packaging Applications, and Set 4: Thermal Packaging Configurations) will provide a comprehensive, one-stop treatment of the techniques, tools, applications, and configurations of electronic thermal packaging. Each of the author-written sets presents the accumulated wisdom and shared perspectives of a few luminaries in the thermal management of electronics.Set 2: Thermal Packaging ToolsThe second set in the encyclopedia, Thermal Packaging Tools, includes volumes dedicated to thermal design of data centers, techniques and models for the design and optimization of heat sinks, the development and use of reduced-order “compact” thermal models of electronic components, a database of critical material thermal properties, and a comprehensive exploration of thermally-informed electronic design. The numerical and analytical techniques described in these volumes are among the primary tools used by thermal packaging practitioners and researchers to accelerate product and system development and achieve “correct by design” thermal packaging solutions.The four sets in the Encyclopedia of Thermal Packaging will provide the novice and student with a complete reference for a quick ascent on the thermal packaging ';learning curve,'; the practitioner with a validated set of techniques and tools to face every challenge, and researchers with a clear definition of the state-of-the-art and emerging needs to guide their future efforts. This encyclopedia will, thus, be of great interest to packaging engineers, electronic product development engineers, and product managers, as well as to researchers in thermal management of electronic and photonic components and systems, and most beneficial to undergraduate and graduate students studying mechanical, electrical, and electronic engineering.




Women in Science: Materials


Book Description

The Frontiers in Materials Editorial Office team are delighted to present the inaugural “Women in Science: Materials” article collection, showcasing the high-quality work of women in science across the breadth of materials science and engineering. All researchers featured within this collection were individually nominated by the Topic Editors in recognition of their status as leading academics who have great potential to influence the future directions of their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the materials science and engineering field and presents advances in theory, experimentation, and methodology with applications for solving compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Materials Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank the Topic Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact. Emily Young Journal Development Manager