Proceedings of the International Workshop on Applications of Neural Networks to Telecommunications


Book Description

The world is witnessing the rapid evolution of its own nervous system by an unparalleled growth in communication technology. Like the evolution of the nervous systems in animals, this growth is being driven by a survival-of-the-fittest-mechanism. In telecommunications, the entities that fuel this growth are companies and nations who compete with each other. Companies with superior information systems can outrun and outsmart others because they serve their customers better. On the threshold of an explosion in the variety, speed and usefulness of telecommunication networks, neural network researchers can make important contributions to this emerging new telecommunications infrastructure. The first International Workshop on Applications of Neural Networks to Telecommunications (IWANNT) was planned in response to the telecommunications industry's needs for new adaptive technologies. This workshop featured 50 talks and posters that were selected by an organizing committee of experts in both telecommunications and neural networks. These proceedings will also be available on-line in an electronic format providing multimedia figures, cross-referencing, and annotation.




IJCAI-89


Book Description




Machine Learning Proceedings 1989


Book Description

Machine Learning Proceedings 1989




Advanced Solutions in Power Systems


Book Description

Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements. Discusses detailed operating principles and diagrams, theory of modeling, control strategies and physical installations around the world of HVDC and FACTS systems Covers a wide range of Artificial Intelligence techniques that are successfully applied for many power system problems, from planning and monitoring to operation and control Each chapter is carefully edited, with drawings and illustrations that helps the reader to easily understand the principles of operation or application Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence is written for graduate students, researchers in transmission and distribution networks, and power system operation. This book also serves as a reference for professional software developers and practicing engineers.




Logical Foundations for Cognitive Agents


Book Description

It is a pleasure and an honor to be able to present this collection of papers to Ray Reiter on the occasion of his 60th birthday. To say that Ray's research has had a deep impact on the field of Artificial Intel ligence is a considerable understatement. Better to say that anyone thinking of do ing work in areas like deductive databases, default reasoning, diagnosis, reasoning about action, and others should realize that they are likely to end up proving corol laries to Ray's theorems. Sometimes studying related work makes us think harder about the way we approach a problem; studying Ray's work is as likely to make us want to drop our way of doing things and take up his. This is because more than a mere visionary, Ray has always been a true leader. He shows us how to proceed not by pointing from his armchair, but by blazing a trail himself, setting up camp, and waiting for the rest of us to arrive. The International Joint Conference on Ar tificial Intelligence clearly recognized this and awarded Ray its highest honor, the Research Excellence award in 1993, before it had even finished acknowledging all the founders of the field. The papers collected here sample from many of the areas where Ray has done pi oneering work. One of his earliest areas of application was databases, and this is re flected in the chapters by Bertossi et at. and the survey chapter by Minker.




Pattern Recognition


Book Description

For more than 40 years, pattern recognition approaches are continuingly improving and have been used in an increasing number of areas with great success. This book discloses recent advances and new ideas in approaches and applications for pattern recognition. The 30 chapters selected in this book cover the major topics in pattern recognition. These chapters propose state-of-the-art approaches and cutting-edge research results. I could not thank enough to the contributions of the authors. This book would not have been possible without their support.




Support Vector Machines for Pattern Classification


Book Description

Support vector machines (SVMs), were originally formulated for two-class classification problems, and have been accepted as a powerful tool for developing pattern classification and function approximations systems. This book provides a unique perspective of the state of the art in SVMs by taking the only approach that focuses on classification rather than covering the theoretical aspects. The book clarifies the characteristics of two-class SVMs through their extensive analysis, presents various useful architectures for multiclass classification and function approximation problems, and discusses kernel methods for improving generalization ability of conventional neural networks and fuzzy systems. Ample illustrations, examples and computer experiments are included to help readers understand the new ideas and their usefulness. This book supplies a comprehensive resource for the use of SVMs in pattern classification and will be invaluable reading for researchers, developers & students in academia and industry.




Artificial Intelligence in Design '91


Book Description

Artificial Intelligence in Design '91 is a collection of 47 papers from the First International Conference on Artificial Intelligence in Design held at Edinburgh in June 1991. The papers in this book are grouped into 13 headings, starting with a background of AI design systems and to which extent AI that results from being used as planning tool be applied to quality-oriented design processes in architecture. A constraint-driven approach to object-oriented design is also shown on real-world objects. The use of CADSYN in the structural design of buildings is examined, along with design-dependent knowledge and design-independent knowledge. Discussions on empowering designers with integrated design environments are given whereby design objects may be retrieved from catalogues without requiring users to form queries. Mention is given to automated adjustment of parameter values frequently used in computer routine applications. The book also introduces the Computer Aided Design (CAD) as applied to architecture. Design representation using data models, non-monotonic reasoning in design, and the cognitive aspects of design using empirical studies are discussed. Topics of the industrial applications of AI in design, such as the needed steps to develop a successful AI-based tool, and a review of the Castlemain Project and telecommunication distribution networks follow. This book is suitable for programmers, computer science students, and architects and engineers who use computers in their line of work.




Genetic Algorithms for Machine Learning


Book Description

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.