Proceedings of the Future Technologies Conference (FTC) 2024, Volume 1
Author : Kohei Arai
Publisher : Springer Nature
Page : 650 pages
File Size : 50,78 MB
Release :
Category :
ISBN : 3031731107
Author : Kohei Arai
Publisher : Springer Nature
Page : 650 pages
File Size : 50,78 MB
Release :
Category :
ISBN : 3031731107
Author : Kohei Arai
Publisher : Springer Nature
Page : 678 pages
File Size : 17,24 MB
Release :
Category :
ISBN : 3031731220
Author : Kohei Arai
Publisher : Springer Nature
Page : 726 pages
File Size : 12,37 MB
Release :
Category :
ISBN : 3031731255
Author : Kohei Arai
Publisher : Springer Nature
Page : 655 pages
File Size : 33,43 MB
Release :
Category :
ISBN : 303173128X
Author : S. Manoharan
Publisher : Springer Nature
Page : 523 pages
File Size : 16,67 MB
Release :
Category :
ISBN : 3031614755
Author : Meiko Jensen
Publisher : Springer Nature
Page : 262 pages
File Size : 25,28 MB
Release :
Category :
ISBN : 3031680243
Author : Hamido Fujita
Publisher : Springer Nature
Page : 525 pages
File Size : 22,27 MB
Release :
Category :
ISBN : 9819746779
Author : B. K. Tripathy
Publisher : CRC Press
Page : 355 pages
File Size : 17,95 MB
Release : 2024-08-23
Category : Technology & Engineering
ISBN : 1040099939
Transparent Artificial Intelligence (AI) systems facilitate understanding of the decision-making process and provide opportunities in various aspects of explaining AI models. This book provides up-to-date information on the latest advancements in the field of explainable AI, which is a critical requirement of AI, Machine Learning (ML), and Deep Learning (DL) models. It provides examples, case studies, latest techniques, and applications from domains such as healthcare, finance, and network security. It also covers open-source interpretable tool kits so that practitioners can use them in their domains. Features: Presents a clear focus on the application of explainable AI systems while tackling important issues of “interpretability” and “transparency”. Reviews adept handling with respect to existing software and evaluation issues of interpretability. Provides insights into simple interpretable models such as decision trees, decision rules, and linear regression. Focuses on interpreting black box models like feature importance and accumulated local effects. Discusses capabilities of explainability and interpretability. This book is aimed at graduate students and professionals in computer engineering and networking communications.
Author : Carlo Dindorf
Publisher : Springer Nature
Page : 266 pages
File Size : 37,85 MB
Release :
Category :
ISBN : 3031672569
Author : Kohei Arai
Publisher : Springer Nature
Page : 699 pages
File Size : 29,23 MB
Release :
Category :
ISBN : 3031622693