Nuclear Safety


Book Description




TID.


Book Description




Status of Fast Reactor Research and Technology Development


Book Description

"Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.







Structural Materials in Nuclear Power Systems


Book Description

In recent years the effort devoted to assuring both the safety and reliability of commercial nuclear fission power reactors has markedly increased. The incentives for performing this work are large since the resulting im provement in plant productivity translates into lower fuel costs and, more importantly, reduced reliance on imported oil. Reliability and availability of nuclear power plants, whether fission or fusion, demand that more attention be focused on the behavior of materials. Recent experiences with fission power indicate that the basic properties of materials, which categorize their reliable behavior under specified conditions, need reinforcement to assure trouble-free operation for the expected service life. The pursuit of additional information con tinues to demand a better understanding of some of the observed anom alous behavior, and of the margin of resistance of materials to unpre dictable service conditions. It is also apparent that, next to plasma heating and confinement, materials selection represents the most serious chal lenge to the introduction of fusion power. The recognition of the importance of materials performance to nu clear plant performance has sustained a multimillion dollar worldwide research and development effort that has yielded significant results, both in quantification of the performance limits of materials in current use and the development and qualification of new materials. Most of this infor mation appears in the open literature in the form of research reports, journal articles, and conference proceedings.




Centrifugal Pumps for Sodium Cooled Reactors


Book Description

This comprehensive introduction to centrifugal pumps used in sodiumcooled fast reactors discusses the special attributes of centrifugal pumps, design features, manufacturing requirements, instrumentation, and operating experience. It covers the characteristics of mechanical pumps, used as the main coolant pumps in fast reactors. Key Features: Covers description of pumps in various reactors highlighting the special features of the pumps and providing an overview of futuristic design concepts Discusses the aspects related to the design, manufacture, testing, instrumentation, and operating experience of centrifugal sodium pumps Highlights the challenges in centrifugal sodium pump testing Presents topics such as cavitation testing for critical applications and thermodynamic effect on pump cavitation Real-life case studies are included for better understanding This book gives a detailed overview of the design, manufacture, testing, and operating experience of the main coolant pumps used in sodium-cooled nuclear reactors. It further discusses the special type of pumps used in fast reactor power plants to circulate liquid sodium through the core. The text examines the challenges in centrifugal sodium pump testing and types of test facilities around the world. Real-life examples are used to highlight important aspects. It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields such as mechanical engineering, nuclear engineering, and chemical engineering.




Comprehensive Nuclear Materials


Book Description

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field