Thermal Transport in Strongly Correlated Rare-Earth Intermetallic Compounds


Book Description

This thesis explores thermal transport in selected rare-earth-based intermetallic compounds to answer questions of great current interest. It also sheds light on the interplay of Kondo physics and Fermi surface changes. By performing thermal conductivity and electrical resistivity measurements at temperatures as low as 25mK, the author demonstrates that the Wiedemann–Franz law, a cornerstone of metal physics, is violated at precisely the magnetic-field-induced quantum critical point of the heavy-fermion metal YbRh2Si2. This first-ever observation of a violation has dramatic consequences, as it implies a breakdown of the quasiparticle picture. Utilizing an innovative technique to measure low-temperature thermal transport isothermally as a function of the magnetic field, the thesis interprets specific, partly newly discovered, high-field transitions in CeRu2Si2 and YbRh2Si2 as Lifshitz transitions related to a change in the Fermi surface. Lastly, by applying this new technique to thermal conductivity measurements of the skutterudite superconductor LaPt4Ge12, the thesis proves that the system is a conventional superconductor with a single energy gap. Thus, it refutes the widespread speculations about unconventional Cooper pairing in this material.




Rare-Earth Borides


Book Description

Rare-earth borides have attracted continuous interest for more than half a century both from the point of view of fundamental condensed matter physics and for practical applications in various fields of engineering. They demonstrate a wealth of unusual electronic and magnetic properties that have been closely investigated in recent decades using advanced spectroscopies and state-of-the-art physical characterization methods. Authored by leading experts in the field, this book features a comprehensive collection of reviews offering a cutting-edge summary of the research on rare-earth borides from various viewpoints. It includes chapters on the growth and characterization of single-crystal and thin-film samples, detailed description of their lattice structure and dynamics, electronic and magnetic properties in the bulk and at the surface, low-temperature ordering phenomena, and theoretical and experimental description of the unusual spectroscopic properties from the perspective of modern x-ray and neutron scattering, Raman spectroscopy, and electron spin resonance. The book will appeal to anyone interested in the physics and chemistry of solids and low-temperature physics, especially to researchers and postgraduate students who study magnetic and electronic properties of rare-earth compounds.




Chemical Abstracts Service Source Index


Book Description

A key source to journal and conference abbreviations in the sciences. Although it focuses on chemistry, other scientific and engineering disciplines are also well represented. In addition to the abbreviation and full title, each entry also contains publishing info, title changes, language and frequency of publication, and libraries owning that title. Over 130,000 entries representing more than 70,000 publications dating back to 1907 are included.




Metals Abstracts


Book Description




Modern trends in Superconductivity and Superfluidity


Book Description

This book concisely presents the latest trends in the physics of superconductivity and superfluidity and magnetism in novel systems, as well as the problem of BCS-BEC crossover in ultracold quantum gases and high-Tc superconductors. It further illuminates the intensive exchange of ideas between these closely related fields of condensed matter physics over the last 30 years of their dynamic development. The content is based on the author’s original findings obtained at the Kapitza Institute, as well as advanced lecture courses he held at the Moscow Engineering Physical Institute, Amsterdam University, Loughborough University and LPTMS Orsay between 1994 and 2011. In addition to the findings of his group, the author discusses the most recent concepts in these fields, obtained both in Russia and in the West. The book consists of 16 chapters which are divided into four parts. The first part describes recent developments in superfluid hydrodynamics of quantum fluids and solids, including the fashionable subject of possible supersolidity in quantum crystals of 4He, while the second describes BCS-BEC crossover in quantum Fermi-Bose gases and mixtures, as well as in the underdoped states of cuprates. The third part is devoted to non-phonon mechanisms of superconductivity in unconventional (anomalous) superconductors, including some important aspects of the theory of high-Tc superconductivity. |The last part considers the anomalous normal state of novel superconductive materials and materials with colossal magnetoresistance (CMR). The book offers a valuable guide for senior-level undergraduate students and graduate students, postdoctoral and other researchers specializing in solid-state and low-temperature physics.




Proceedings ICT'02


Book Description




Physics Briefs


Book Description