Computational Vision and Medical Image Processing: VipIMAGE 2011


Book Description

This book contains invited lecturers and full papers presented at VIPIMAGE 2011 - III ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing (Olh Algarve, Portugal, 12-14 October 2011). International contributions from 16 countries provide a comprehensive coverage of the current state-of-the-art in: Image Processing




Smart Sensing and Context


Book Description

This volume constitutes the revised papers of the 4th European Conference on Smart Sensing and Context, Euro SSC 2009, held in Guilford, UK, in September 2009. This volume consists of 16 full papers. Each paper received at least three peer reviews. The conference and proceedings were structured into 6 main tracks which discussed the key themes addressed by EuroSCC 2009: activity recognition, information aspects of context-aware sensor and actuator systems, context-aware service platforms, context processing, reasoning and fusion, real-world experiences with deployed systems, and context-aware frameworks in mobile environments.




Biomedical Image Understanding


Book Description

A comprehensive guide to understanding and interpreting digital images in medical and functional applications Biomedical Image Understanding focuses on image understanding and semantic interpretation, with clear introductions to related concepts, in-depth theoretical analysis, and detailed descriptions of important biomedical applications. It covers image processing, image filtering, enhancement, de-noising, restoration, and reconstruction; image segmentation and feature extraction; registration; clustering, pattern classification, and data fusion. With contributions from experts in China, France, Italy, Japan, Singapore, the United Kingdom, and the United States, Biomedical Image Understanding: Addresses motion tracking and knowledge-based systems, two areas which are not covered extensively elsewhere in a biomedical context Describes important clinical applications, such as virtual colonoscopy, ocular disease diagnosis, and liver tumor detection Contains twelve self-contained chapters, each with an introduction to basic concepts, principles, and methods, and a case study or application With over 150 diagrams and illustrations, this bookis an essential resource for the reader interested in rapidly advancing research and applications in biomedical image understanding.




Business Process Management Workshops


Book Description

Constitutes the refereed post-workshop proceedings of 9 international workshops held in Milano, Italy, in conjunction with the 6th International Conference on Business Process Management, BPM 2008, in September 2008.




Graphics Processing Unit-Based High Performance Computing in Radiation Therapy


Book Description

Use the GPU Successfully in Your Radiotherapy Practice With its high processing power, cost-effectiveness, and easy deployment, access, and maintenance, the graphics processing unit (GPU) has increasingly been used to tackle problems in the medical physics field, ranging from computed tomography reconstruction to Monte Carlo radiation transport simulation. Graphics Processing Unit-Based High Performance Computing in Radiation Therapy collects state-of-the-art research on GPU computing and its applications to medical physics problems in radiation therapy. Tackle Problems in Medical Imaging and Radiotherapy The book first offers an introduction to the GPU technology and its current applications in radiotherapy. Most of the remaining chapters discuss a specific application of a GPU in a key radiotherapy problem. These chapters summarize advances and present technical details and insightful discussions on the use of GPU in addressing the problems. The book also examines two real systems developed with GPU as a core component to accomplish important clinical tasks in modern radiotherapy. Translate Research Developments to Clinical Practice Written by a team of international experts in radiation oncology, biomedical imaging, computing, and physics, this book gets clinical and research physicists, graduate students, and other scientists up to date on the latest in GPU computing for radiotherapy. It encourages you to bring this novel technology to routine clinical radiotherapy practice.




GPU Computing Gems Emerald Edition


Book Description

GPU Computing Gems Emerald Edition offers practical techniques in parallel computing using graphics processing units (GPUs) to enhance scientific research. The first volume in Morgan Kaufmann's Applications of GPU Computing Series, this book offers the latest insights and research in computer vision, electronic design automation, and emerging data-intensive applications. It also covers life sciences, medical imaging, ray tracing and rendering, scientific simulation, signal and audio processing, statistical modeling, video and image processing. This book is intended to help those who are facing the challenge of programming systems to effectively use GPUs to achieve efficiency and performance goals. It offers developers a window into diverse application areas, and the opportunity to gain insights from others' algorithm work that they may apply to their own projects. Readers will learn from the leading researchers in parallel programming, who have gathered their solutions and experience in one volume under the guidance of expert area editors. Each chapter is written to be accessible to researchers from other domains, allowing knowledge to cross-pollinate across the GPU spectrum. Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution. The insights and ideas as well as practical hands-on skills in the book can be immediately put to use. Computer programmers, software engineers, hardware engineers, and computer science students will find this volume a helpful resource. For useful source codes discussed throughout the book, the editors invite readers to the following website: ..." - Covers the breadth of industry from scientific simulation and electronic design automation to audio / video processing, medical imaging, computer vision, and more - Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution - Offers insights and ideas as well as practical "hands-on" skills you can immediately put to use




Image Analysis


Book Description

This book constitutes the refereed proceedings of the 15th Scandinavian Conference on Image Analysis, SCIA 2007, held in Aalborg, Denmark in June 2007. It covers computer vision, 2D and 3D reconstruction, classification and segmentation, medical and biological applications, appearance and shape modeling, face detection, tracking and recognition, motion analysis, feature extraction and object recognition.




Advanced Mechatronics Solutions


Book Description

Focusing on the most rapidly changing areas of mechatronics, this book discusses signals and system control, mechatronic products, metrology and nanometrology, automatic control & robotics, biomedical engineering, photonics, design manufacturing and testing of MEMS. It is reflected in the list of contributors, including an international group of 302 leading researchers representing 12 countries. The book is intended for use in academic, government and industry R&D departments, as an indispensable reference tool for the years to come. Thid volume can serve a global community as the definitive reference source in Mechatronics. The book comprises carefully selected 93 contributions presented at the 11th International Conference Mechatronics 2015, organized by Faculty of Mechatronics, Warsaw University of Technology, on September 21-23, in Warsaw, Poland.




Designing Intelligent Healthcare Systems, Products, and Services Using Disruptive Technologies and Health Informatics


Book Description

Disruptive technologies are gaining importance in healthcare systems and health informatics. By discussing computational intelligence, IoT, blockchain, cloud and big data analytics, this book provides support to researchers and other stakeholders involved in designing intelligent systems used in healthcare, its products, and its services. This book offers both theoretical and practical application-based chapters and presents novel technical studies on designing intelligent healthcare systems, products, and services. It offers conceptual and visionary content comprising hypothetical and speculative scenarios and will also include recently developed disruptive holistic techniques in healthcare and the monitoring of physiological data. Metaheuristic computational intelligence-based algorithms for analysis, diagnosis, and prevention of disease through disruptive technologies are also provided. Designing Intelligent Healthcare Systems, Products, and Services Using Disruptive Technologies and Health Informatics is written for researchers, academicians, and professionals to bring them up to speed on current research endeavours, as well as to introduce hypothetical and speculative scenarios.




Sensor Network Operations


Book Description

This excellent title introduces the concept of mission-oriented sensor networks as distributed dynamic systems of interacting sensing devices that are networked to jointly execute complex real-time missions under uncertainity. It provides the latest, yet unpublished results on the main technical and application challenges of mission-oriented sensor networks. The authors of each chapter are research leaders from multiple disciplines who are presenting their latest innovations on the issues. Together, the editors have compiled a comprehensive treatment of the subject that flows smoothly from chapter to chapter. This interdisciplinary approach significantly enhances the science and technology knowledge base and influences the military and civilian applications of this field. Author Information: Dr. Shashi Phoha is the Guest Editor of IEEE Transactions in Mobile Computing, Special Issue on Mission-Oriented Sensor Networks. She is the Head of the Information Sciences and Technology Division of ARL and Professor of Electrical and Computer Engineering at Pennsylvania State University. She has led major research programs of multimillion dollars for military sensor networks in industry as well as in academia. In addition to more than a hundred journal articles, she authored or co-authored several books in related areas. Dr. Thomas La Porta is the Editor of the IEEE Transactions on Mobile Computing. He received his B.S.E.E. and M.S.E.E. degrees from The Cooper Union, New York, NY and his Ph.D. degree in Electrical Engineering from Columbia University, New York, NY. He joined the Computer Science and Engineering Department at Penn State in 2002 as a Full Professor. He is Director of the Networking Research Center at Penn State. Prior to joining Penn State, Dr. LaPorta was with Bell Laboratories since 1986. He was the Director of the Mobile Networking Research Department Bell Laboratories, Lucent Technologies, where he led various projects in wireless and mobile networking. He is an IEEE Fellow, Bell Labs Fellow, received the Bell Labs Distinguished Technical Staff Award, and an Eta Kappa Nu Outstanding Young Electrical Engineer Award. He has published over 50 technical papers and holds over 20 patents. Christopher Griffin holds a Masters degree in Mathematics from Penn State and is currently pursuing his Ph.D. there. Mr. Griffin has worked as a research engineer at the Penn State Applied Research Laboratory for the last six years on several DARPA and or Army Research Laboratory sponsored programs, including: the Emergent Surveillance Plexus (ESP) program as a lead engineer; the DARPA sponsored Semantic Information Fusion program under the SensIT initiative, where he co-developed a distributed target tracking system and managed the development of a target classification algorithm using Level 1 sensor fusion techniques; as a co-principal software architect for the DARPA Joint Force Component Controller (JFACC) initiative, an adaptive C2 program aimed at improving Air Force response times; and he was the principal software architect for the Boeing/ARFL Insertion of Embedding Infosphere Technology (IEIST) program. His areas of research expertise are distributed tracking systems, mission oriented control, and system modeling.