Advances in Cryogenic Engineering Materials


Book Description

Proceedings of the Tenth International Cryogenic Materials Conference (ICMC) held in Albuquerque, New Mexico, July 12-16, 1993.




Advances in Cryogenic Engineering


Book Description

The 1989 Cryogenic Engineering Conference, meeting jointly with the International Cryogenic Materials Conference, was held on the campus of the University of California, Los Angeles from July 24 to 28. Professor T.H.K. Frederking was the conference chairman. The Conference had previously met at U.C.L.A. in 1962 and 1969. A special symposium, "A Half Century of Superfluid Helium," was a significant part of the program of CEC-89. We were especially fortunate to have Professor Jack Allen of the University of St. Andrews, Scotland present at the Conference; his paper, "Early Superfluidity in Cambridge, 1936 to 1939," was a delightful, often humorous account of the early experimental work with superfluid helium. Professors V.L. Ginzburg and J.L. Olesen could not be present for the Symposium, but provided papers which are published in these proceedings. The late Bill Fairbank, responding graciously to a last-minute invitation from Professor Frederking, presented a wonderful account of superfluid research in the United States in the post-war years.










Applications of Cryogenic Technology


Book Description

Applications of Cryogenic Technology, Vol. 10, is the proceedings from the portion of the conference CRYO-90 sponsored by the Cryogenic Society of America (CSA). CRYO-90, held on the campus of the State University of New York, Binghamton, New York, was an unusual interdisciplinary event, drawing from the life sciences as well as the physical science and engineering areas of the low temperature community. Co-sponsoring CRYO-90 with CSA were the Society for Cryobiology and the Symposium on Invertebrate and Plant Cold Hardiness. These latter two organizations brought an exciting developing field to the conference, a field whose exploration will lead to the betterment of all mankind through improved cryosurgical and organ preservation techniques in addition to improved agricultural and herd yields under extreme conditions. Specific goals of the cryobiological community are cryopreservation, the arrest and recovery of living processes of cells, tissues and organs; and cryosurgery - the local cryodestruction of diseased cells while preserving the healthy surrounding tissue. These goals present great technological challenges. The technological requirements of the cryobiologist include the ability to cool tissues 6 at rates of 10 degrees per second (vitrification), to thaw frozen tissue without damaging the delicate cells, to freeze dry tissue using molecular distillation (vacuum) drying, to supercool cell structures below O°C without freezing, and to successfully store the preserved tissues and organs for any required length of time.