Proceedings of the Third International Conference on Coupled Instabilities in Metal Structures


Book Description

The subject of coupled instabilities is a fascinating field of research with a wide range of practical applications, particularly in the analysis and design of metal structures. Despite the excellent body of existing results concerning coupled instability structural behaviour, this situation has not yet been adequately translated into design rules or specifications. In fact, only to a small extent do modern design codes for metal structures take advantage of the significant progress made in the field. This book, which contains all the invited general reports and selected papers presented at the Third International Conference on "Coupled Instabilities in Metal Structures". (CIMS '2000), should provide a meaningful contribution towards filling the gap between research and practice.




Coupled Instabilities In Metal Structures: Cims'96


Book Description

Since the early 1960s, coupled instabilities — also called compound buckling, simultaneous buckling or interactive buckling — have been a topic that was studied by many researchers. However, despite some excellent theoretical works in this field, the relevant subject is not yet satisfactorily considered in modern design codes for metal structures. To fill up this gap and to improve the current situation, a series of International Conferences 'Coupled Instabilities in Metal Structures' was launched in 1992 with the main aim of encouraging an exchange of views between researchers and engineers on the various aspects of coupled instabilities. The success of the first conference, held at Timisoara (Romania) in 1992, and organized by Professors D Dubina & V Gioncu (Politechnica University of Timisoara) and J Rondal (Univ. of Liège), has encouraged the organization of a second conference, to be held in Liège (Belgium) during September 5-7, 1996. A third conference is still forecast for the year 2000.




Coupled Instabilities in Metal Structures


Book Description

The aim of the book is to fill up the gaps between theoretical, numerical, and practical design approaches in the field of coupled instabilities of metal structures. The book is organized in a way leading progressively from the mathematical basic theories to the design aspects through numerical and semi-empirical approaches of the interactive buckling of metal structures. Optimum design account taken of coupled instabilities and code aspects are also briefly covered.




Applied Mechanics: Progress And Applications, Proceedings Of The Third Australasian Congress On Applied Mechanics


Book Description

Contents: Keynote PapersBiomechanicsConstitutive ModellingFracture, Fatigue and DamageGeo-Mechanics and MiningImpact and DynamicsMeasurement and Case StudiesMachining and SurfacingMetal FormingParticle MaterialsSmart Structures, Structure Repair and MonitoringStress, Deformation and CompositesStructural Mechanics and OptimisationTribology, Manufacturing and MachineryVibration and Time-Dependent Deformation Readership: Graduate students, academics, researchers and practitioners in engineering mechanics, aerospace engineering and materials engineering. Keywords:




Thin-Walled Structures


Book Description

This volume contains the papers presented at the Fourth International Conference of Thin-Walled Structures (ICTWS4), and contains 110 papers which, collectively, provide a comprehensive state-of-the-art review of the progress made in research, development and manufacture in recent years in thin-walled structures.The presentations at the conference had representation form 35 different countries and their topical areas of interest included aeroelastic response, structural-acoustic coupling, aerospace structures, analysis, design, manufacture, cold-formed structures, cyclic loading, dynamic loading, crushing, energy absorption, fatigue, fracture, damage tolerance, plates, stiffened panels, plated structures, polymer matrix composite members, sandwich structures, shell structures, thin-walled beams, columns and vibrational response. The range of applications of thin-walled structures has become increasingly diverse with a considerable deployment of thin-walled structural elements and systems being found in a wide range of areas within Aeronautical, Automotive, Civil, Mechanical, Chemical and Offshore Engineering fields. This volume is an extremely useful reference volume for researchers and designers working within a wide range of engineering disciplines towards the design, development and manufacture of efficient thin-walled structural systems.




Modern Trends in Research on Steel, Aluminium and Composite Structures


Book Description

Modern Trends in Research on Steel, Aluminium and Composite Structures includes papers presented at the 14th International Conference on Metal Structures 2021 (ICMS 2021, Poznań, Poland, 16-18 June 2021). The 14th ICMS summarised a few years’ theoretical, numerical and experimental research on steel, aluminium and composite structures, and presented new concepts. This book contains six plenary lectures and all the individual papers presented during the Conference. Seven plenary lectures were presented at the Conference, including "Research developments on glass structures under extreme loads", Parhp3D – The parallel MPI/openMPI implementation of the 3D hp-adaptive FE code", "Design of beam-to-column steel-concrete composite joints: from Eurocodes and beyond", "Stainless steel structures – research, codification and practice", "Testing, modelling and design of bolted joints – effect of size, structural properties, integrity and robustness", "Design of hybrid beam-to-column joints between RHS tubular columns and I-section beams" and "Selected aspects of designing the cold-formed steel structures". The individual contributions delivered by authors covered a wide variety of topics: – Advanced analysis and direct methods of design, – Cold-formed elements and structures, – Composite structures, – Engineering structures, – Joints and connections, – Structural stability and integrity, – Structural steel, metallurgy, durability and behaviour in fire. Modern Trends in Research on Steel, Aluminium and Composite Structures is a useful reference source for academic researchers, graduate students as well as designers and fabricators.




Thin-Walled Structures - Advances and Developments


Book Description

This volume contains the papers presented at the Third International Conference on Thin-Walled Structures, Cracow, Poland on June 5-7, 2001. There has been a substantial growth in knowledge in the field of Thin-Walled Structures over the past few decades. Lightweight structures are in widespread use in the Civil Engineering, Mechanical Engineering, Aeronautical, Automobile, Chemical and Offshore Engineering fields. The development of new processes, new methods of connections, new materials has gone hand-in-hand with the evolution of advanced analytical methods suitable for dealing with the increasing complexity of the design work involved in ensuring safety and confidence in the finished products.Of particular importance with regard to the analytical process is the growth in use of the finite element method. This method, about 40 years ago, was confined to rather specialist use, mainly in the aeronautical field, because of its requirements for substantial calculation capacity. The development over recent years of extremely powerful microcomputers has ensured that the application of the finite element method is now possible for problems in all fields of engineering, and a variety of finite element packages have been developed to enhance the ease of use and the availability of the method in the engineering design process.




Insights and Innovations in Structural Engineering, Mechanics and Computation


Book Description

Insights and Innovations in Structural Engineering, Mechanics and Computation comprises 360 papers that were presented at the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016, Cape Town, South Africa, 5-7 September 2016). The papers reflect the broad scope of the SEMC conferences, and cover a wide range of engineering structures (buildings, bridges, towers, roofs, foundations, offshore structures, tunnels, dams, vessels, vehicles and machinery) and engineering materials (steel, aluminium, concrete, masonry, timber, glass, polymers, composites, laminates, smart materials). Some contributions present the latest insights and new understanding on (i) the mechanics of structures and systems (dynamics, vibration, seismic response, instability, buckling, soil-structure interaction), and (ii) the mechanics of materials and fluids (elasticity, plasticity, fluid-structure interaction, flow through porous media, biomechanics, fracture, fatigue, bond, creep, shrinkage). Other contributions report on (iii) recent advances in computational modelling and testing (numerical simulations, finite-element modeling, experimental testing), and (iv) developments and innovations in structural engineering (planning, analysis, design, construction, assembly, maintenance, repair and retrofitting of structures). Insights and Innovations in Structural Engineering, Mechanics and Computation is particularly of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find the content useful. Short versions of the papers, intended to be concise but self-contained summaries of the full papers, are collected in the book, while the full versions of the papers are on the accompanying CD.




Resolution Of The Twentieth Century Conundrum In Elastic Stability


Book Description

There have been stability theories developed for beams, plates and shells — the most significant elements in mechanical, aerospace, ocean and marine engineering. For beams and plates, the theoretical and experimental values of buckling loads are in close vicinity. However for thin shells, the experimental predictions do not conform with the theory, due to presence of small geometric imperfections that are deviations from the ideal shape.This fact has been referred to in the literature as ‘embarrassing’, ‘paradoxical’ and ‘perplexing’. Indeed, the popular adage, “In theory there is no difference between theory and practice. In practice there is”, very much applies to thin shells whose experimental buckling loads may constitute a small fraction of the theoretical prediction based on classical linear theory; because in practice, engineers use knockdown factors that are not theoretically substantiated.This book presents a uniform approach that tames this prima-donna-like and capricious behavior of structures that has been dubbed the ‘imperfection sensitivity’ — thus resolving the conundrum that has occupied the best minds of elastic stability throughout the twentieth century.




Structural & Construction Conf


Book Description

Objective of conference is to define knowledge and technologies needed to design and develop project processes and to produce high-quality, competitive, environment- and consumer-friendly structures and constructed facilities. This goal is clearly related to the development and (re)-use of quality materials, to excellence in construction management and to reliable measurement and testing methods.