Variational And Local Methods In The Study Of Hamiltonian Systems - Proceedings Of The Workshop


Book Description

In this volume, various ideas about Hamiltonian dynamics were discussed. Particular emphasis was placed on mechanical systems with singular potentials (such as the N-Body Newtonian problem) and on their special features, although important aspects of smooth dynamics were also discussed, from both the local point of view and the point of view of global analysis.




Mathematical Aspects of Classical and Celestial Mechanics


Book Description

The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.




Nonlinear Partial Differential Equations And Applications: Proceedings Of The Conference


Book Description

Contents: Direct and Inverse Diffraction by Periodic Structures (G Bao)Weak Flow of H-Systems (Y-M Chen)Strongly Compact Attractor for Dissipative Zakharov Equations (B-L Guo et al.)C∞-Solutions of Generalized Porous Medium Equations (M Ôtani & Y Sugiyama)Cauchy Problem for Generalized IMBq Equation (G-W Chen & S-B Wang)Inertial Manifolds for a Nonlocal Kuramoto–Sivashinsky Equation (J-Q Duan et al.)Weak Solutions of the Generalized Magnetic Flow Equations (S-H He & Z-D Dai)The Solution of Hammerstein Integral Equation Without Coercive Conditions (Y-L Shu)Global Behaviour of the Solution of Nonlinear Forest Evolution Equation (D-J Wang)Uniqueness of Generalized Solutions for Semiconductor Equations (J-S Xing & Y Hu)On the Vectorial Hamilton–Jacobi System (B-S Yan)An Integrable Hamiltonian System Associated with cKdV Hierarchy (J-S Zhang et al.)and other papers Readership: Mathematicians. Keywords:Diffraction;Weak Flow;Zakharov Equations;Porous Medium Equations;Cauchy Problem;IMBq Equation;Kuramoto-Sivashinsky Equation;Magnetic Flow Equations;Hammerstein Integral Equation;Nonlinear Forest Evolution Equation;Uniqueness;Generalized Solutions;Semiconductor Equations;Hamilton–Jacobi System;Hamiltonian System;cKdV Hierarchy




Critical Point Theory


Book Description

This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.




Mathematical Reviews


Book Description




Non-commuting Variations in Mathematics and Physics


Book Description

This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equations with dissipation and corresponding s balance laws is presented.







Variational Methods


Book Description

With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase・amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative photoacoustic tomography with piecewise constant coefficients On optical flow models for variational motion estimation Bilevel approaches for learning of variational imaging models Part II Non-degenerate forms of the generalized Euler・Lagrange condition for state-constrained optimal control problems The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls Controllability of Keplerian motion with low-thrust control systems Higher variational equation techniques for the integrability of homogeneous potentials Introduction to KAM theory with a view to celestial mechanics Invariants of contact sub-pseudo-Riemannian structures and Einstein・Weyl geometry Time-optimal control for a perturbed Brockett integrator Twist maps and Arnold diffusion for diffeomorphisms A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I Index







Physics Letters


Book Description