Proceedings of the XV Conference of the Italian Association for Wind Engineering


Book Description

This volume gathers the latest advances, innovations, and applications in the field of wind engineering, as presented by leading international researchers and engineers at the XV Conference of the Italian Association for Wind Engineering (IN-VENTO 2018), held in Naples, Italy on September 9-12, 2018. It covers highly diverse topics, including aeroelasticity, bluff-body aerodynamics, boundary layer wind tunnel testing, computational wind engineering, structural dynamics and reliability, wind-structure interaction, flow-induced vibrations, wind modeling and forecast, wind disaster mitigation, and wind climate assessment. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists.




Proceedings of the XV Conference of the Italian Association for Wind Engineering


Book Description

This volume gathers the latest advances, innovations, and applications in the field of wind engineering, as presented by leading international researchers and engineers at the XV Conference of the Italian Association for Wind Engineering (IN-VENTO 2018), held in Naples, Italy on September 9-12, 2018. It covers highly diverse topics, including aeroelasticity, bluff-body aerodynamics, boundary layer wind tunnel testing, computational wind engineering, structural dynamics and reliability, wind-structure interaction, flow-induced vibrations, wind modeling and forecast, wind disaster mitigation, and wind climate assessment. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists.




Offshore Wind Energy


Book Description

Addresses the scientific and technical challenges posed by the design of wind turbines for the offshore environment.




Reliability-Based Optimization of Floating Wind Turbine Support Structures


Book Description

This book pursues the ambitious goal of combining floating wind turbine design optimization and reliability assessment, which has in fact not been done before. The topic is organized into a series of very ambitious objectives, which start with an initial state-of-the-art review, followed by the development of high-fidelity frameworks for a disruptive way to design next generation floating offshore wind turbine (FOWT) support structures. The development of a verified aero-hydro-servo-elastic coupled numerical model of dynamics for FOWTs and a holistic framework for automated simulation and optimization of FOWT systems, which is later used for the coupling of design optimization with reliability assessment of FOWT systems in a computationally and time-efficient manner, has been an aim of many groups internationally towards implementing a performance-based/goal-setting approach in the design of complex engineering systems. The outcomes of this work quantify the benefits of an optimal design with a lower mass while fulfilling design constraints. Illustrating that comprehensive design methods can be combined with reliability analysis and optimization algorithms towards an integrated reliability-based design optimization (RBDO) can benefit not only the offshore wind energy industry but also other applications such as, among others, civil infrastructure, aerospace, and automotive engineering.







Renewable Energy


Book Description

This four-volume set, edited by a leading expert in the field, brings together in one collection a series of papers that have been fundamental to the development of renewable energy as a defined discipline. Some of the papers were first published many years ago, but they remain classics in their fields and retain their relevance to the understanding of current issues. The papers have been selected with the assistance of an eminent international editorial board. The set includes a general introduction and each volume is introduced by a new overview essay, placing the selected papers in context. The range of subject matter is considerable, including coverage of all the main renewable technologies, the fundamental principles by which they function, and the issues around their deployment such as planning, integration and socio-economic assessment. Overall, the set provides students, teachers and researchers, confronted with thousands of journal articles, book chapters and grey literature stretching back decades, with a ready-made selection of and commentary on the most important key writings in renewable energy. It will be an essential reference for libraries concerned with energy, technology and the environment.




The Oxford Handbook of Non-Synoptic Wind Storms


Book Description

In different areas of the world, much of the damage due to wind is caused by non-synoptic, local wind storm events, such as tornadoes and downbursts. In North America the damage due to these winds is more than 65% of total wind damage, and there are no guidelines or code implementations to deal with such catastrophic events. As we enter the third decade of the twenty-first century, current research is in its first phase of addressing these types of events, from their characterization, simulation, and loading, to collapse-mode effects on buildings and structures, as well as socioeconomic implications. The need is clear to better understand non-synoptic local winds; properly simulate them; assess the difference in loading between these events and synoptic large-scale winds that have been part of the wind engineering practice for more than five decades; determine their statistics and associated risks; and apply this through guidelines, codes, risk mitigation, and adaptation responses to socioeconomic impact. The Oxford Handbook of Non-Synoptic Wind Storms, led by Dr. Horia Hangan and Dr. Ahsan Kareem, features nearly 30 chapters, contributed by an international panel of leading scientists, scholars, and engineers, that address these issues and stimulate thought, research, and responses to non-synoptic wind storm hazards in North America and worldwide. Together, these articles provide clear definitions of the problems to be tackled, offer a strategic framework for forward-looking research, identify the best-suited tools and methodologies to address the problems at hand, and suggest ways to maximize collaborative planning between the disciplines that will tackle these challenges.




Floating Offshore Wind Energy


Book Description

This book provides a state-of-the-art review of floating offshore wind turbines (FOWT). It offers developers a global perspective on floating offshore wind energy conversion technology, documenting the key challenges and practical solutions that this new industry has found to date. Drawing on a wide network of experts, it reviews the conception, early design stages, load & structural analysis and the construction of FOWT. It also presents and discusses data from pioneering projects. Written by experienced professionals from a mix of academia and industry, the content is both practical and visionary. As one of the first titles dedicated to FOWT, it is a must-have for anyone interested in offshore renewable energy conversion technologies.




Experimental Vibration Analysis for Civil Structures


Book Description

This edited volume presents selected contributions from the International Conference on Experimental Vibration Analysis of Civil Engineering Structures held in San Diego, California in 2017 (EVACES2017). The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation.




Wind Energy


Book Description