Process Control Instrumentation Technology


Book Description

This book gives readers an understanding and appreciation of some of the theories behind control system elements and operations--without advanced math or calculus. It also presents some of the practical details of how elements of a control system are designed and operated--without the benefit of on-the-job experience. Chapter topics include process control; analog and digital signal conditioning; thermal, mechanical, and optical sensors; controller principles; and control loop characteristics. For those in the industry who will need to design the elements of a control system from a practical, working perspective, and comprehend how these elements affect overall system operation and tuning.




Instrumentation and Process Control


Book Description

This book provides comprehensive coverage of components, circuits, instruments, and control techniques used in today's process control technology field. It is ideal for students and technicians who will be installing, troubleshooting, repairing, tuning, and calibrating devices in a process control facility. Following an overview of an industrial control loop, each element of the loop is explored in detail. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.




Instrumentation in Process Control


Book Description

Instrumentation in Process Control details the elements of transducers utilized in doing various measurements. The book also deals with the problems in data gathering from physical processes. The text also examines the different schemes of relaying or showing the data and compares the many ways by which data could be processed. The first chapter opens with an introduction to the study; it then proceeds to talk about primary measurements and notes the importance of selecting the transducer, having precision in measurements, and having a properly designed system. This chapter also presents various tips with regards to a better measurement and data handling. Chapter 2 is about interpreting a transducer's performance, while the next several chapters revolve around measurements. Measurements discussed include those for temperature, pressure, liquid density, displacement, and flow. The book highlights in Chapter 8 the tachometry and provides in Chapters 9 and 10 the lessons on analogue-to-digital conversions. The last three chapters are reserved for computing corrections, data transmission, and digital control techniques, including the fundamentals of these concepts. The text is a great reference and beneficial for students, teachers, researchers, and casual readers, as the book offers a wide information on instrumentation.







Process Control Instrumentation Technology


Book Description

This manual is designed to provide users with an understanding and appreciation of some of the theoretical concepts behind control system elements and operations, without the need of advanced math and theory. It also presents some of the practical details of how elements of a control system are designed and operated, such as would be gained from on-the-job experience. This middle ground of knowledge enables users to design the elements of a control system from a practical, working perspective, and comprehend how these elements affect overall system operation and tuning. This edition includes treatment of modern fieldbus approaches to networked and distributed control systems. Generally, this guidebook provides an introduction to process control, and covers analog and digital signal conditioning, thermal, mechanical and optical sensors, final control, discrete-state process control, controller principles, analog controllers, digital control and control loop characteristics. For those working in measurement and instrumentation and with control systems and PLCs.




Instrumentation Reference Book


Book Description

The discipline of instrumentation has grown appreciably in recent years because of advances in sensor technology and in the interconnectivity of sensors, computers and control systems. This 4e of the Instrumentation Reference Book embraces the equipment and systems used to detect, track and store data related to physical, chemical, electrical, thermal and mechanical properties of materials, systems and operations. While traditionally a key area within mechanical and industrial engineering, understanding this greater and more complex use of sensing and monitoring controls and systems is essential for a wide variety of engineering areas--from manufacturing to chemical processing to aerospace operations to even the everyday automobile. In turn, this has meant that the automation of manufacturing, process industries, and even building and infrastructure construction has been improved dramatically. And now with remote wireless instrumentation, heretofore inaccessible or widely dispersed operations and procedures can be automatically monitored and controlled. This already well-established reference work will reflect these dramatic changes with improved and expanded coverage of the traditional domains of instrumentation as well as the cutting-edge areas of digital integration of complex sensor/control systems. - Thoroughly revised, with up-to-date coverage of wireless sensors and systems, as well as nanotechnologies role in the evolution of sensor technology - Latest information on new sensor equipment, new measurement standards, and new software for embedded control systems, networking and automated control - Three entirely new sections on Controllers, Actuators and Final Control Elements; Manufacturing Execution Systems; and Automation Knowledge Base - Up-dated and expanded references and critical standards




Instrumentation and Process Control


Book Description

An on-the-job reference for process and control engineers, this book presents current articles from Chemical Engineering Magazine on improving performance and optimizing control in the process plant. The contributions provide practical and diverse guidance on how to specify, design, maintain and upgrade the process plant for engineering and economic efficiency.




Instrumentation Fundamentals for Process Control


Book Description

A practical introductory guide to the principles of process measurement and control. Written for those beginning a career in the instrumentation and control industry or those who need a refresher, the book will serve as a text or to supercede the mathematical treatment of control theory that will continue to be essential for a well-rounded understanding. The book will provide the reader with the ability to recognize problems concealed among a mass of data and provide minimal cost solutions, using available technology.




Practical Process Control for Engineers and Technicians


Book Description

This book is aimed at engineers and technicians who need to have a clear, practical understanding of the essentials of process control, loop tuning and how to optimize the operation of their particular plant or process. The reader would typically be involved in the design, implementation and upgrading of industrial control systems. Mathematical theory has been kept to a minimum with the emphasis throughout on practical applications and useful information.This book will enable the reader to:* Specify and design the loop requirements for a plant using PID control* Identify and apply the essential building blocks in automatic control* Apply the procedures for open and closed loop tuning* Tune control loops with significant dead-times* Demonstrate a clear understanding of analog process control and how to tune analog loops* Explain concepts used by major manufacturers who use the most up-to-date technology in the process control field·A practical focus on the optimization of process and plant·Readers develop professional competencies, not just theoretical knowledge·Reduce dead-time with loop tuning techniques




Practical Process Control


Book Description

Practical Process Control (loop tuning and troubleshooting). This book differs from others on the market in several respects. First, the presentation is totally in the time domain (the word "LaPlace" is nowhere to be found). The focus of the book is actually troubleshooting, not tuning. If a controller is "tunable", the tuning procedure will be straightforward and uneventful. But if a loop is "untunable", difficulties will be experienced, usually early in the tuning effort. The nature of any difficulty provides valuable clues to what is rendering the loop "untunable". For example, if reducing the controller gain leads to increased oscillations, one should look for possible interaction with one or more other loops. Tuning difficulties are always symptoms of other problems; effective troubleshooting involves recognizing the clues, identifying the root cause of the problem, and making corrections. Furthermore, most loops are rendered "untunable" due to some aspect of the steady-state behavior of the process. Consequently, the book focuses more on the relationship of process control to steady-state process characteristics than to dynamic process characteristics. One prerequisite to effective troubleshooting is to "demystify" some of the characteristics of the PID control equations. One unique aspect of this book is that it explains in the time domain all aspects of the PID control equation (including as the difference between the parallel and series forms of the PID, the reset feedback form of the PID equation, reset windup protection, etc.) The book stresses an appropriate P&I (process and instrumentation) diagram as critical to successful tuning. If the P&I is not right, tuning difficulties are inevitable. Developing and analyzing P&I diagrams is a critical aspect of troubleshooting.