Process Fault Prediction and Prognosis Based on a Hybrid Technique


Book Description

The present study introduces a novel hybrid methodology for fault detection and diagnosis (FDD) and fault prediction and prognosis (FPP). The hybrid methodology combines both data-driven and process knowledge driven techniques. The Hidden Markov Model (HMM) and the auxiliary codes detect and predict the abnormalities based on process history while the Bayesian Network (BN) diagnoses the root cause of the fault based on process knowledge. In the first step, the system performance is evaluated for fault detection and diagnosis and in the second step, prediction and prognosis are evaluated. In both cases, an HMM trained with Normal Operating Condition data is used to determine the log-likelihoods (LL) of each process history data string. It is then used to develop the Conditional Probability Tables of BN while the structure of BN is developed based on process knowledge. Abnormal behaviour of the system is identified through HMM. The time of detection of an abnormality, respective LL value, and the probabilities of being in the process condition at the time of detection are used to generate the likelihood evidence to BN. The updated BN is then used to diagnose the root cause by considering the respective changes of the probabilities. Performance of the new technique is validated with published data of Tennessee Eastman Process. Eight of the ten selected faults were successfully detected and diagnosed. The same set of faults were predicted and prognosed accurately at different levels of maximum added noise.







Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery


Book Description

Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences




Model-based Health Monitoring of Hybrid Systems


Book Description

This book systematically presents a comprehensive framework and effective techniques for in-depth analysis, clear design procedure, and efficient implementation of diagnosis and prognosis algorithms for hybrid systems. It offers an overview of the fundamentals of diagnosis\prognosis and hybrid bond graph modeling. This book also describes hybrid bond graph-based quantitative fault detection, isolation and estimation. Moreover, it also presents strategies to track the system mode and predict the remaining useful life under multiple fault condition. A real world complex hybrid system—a vehicle steering control system—is studied using the developed fault diagnosis methods to show practical significance. Readers of this book will benefit from easy-to-understand fundamentals of bond graph models, concepts of health monitoring, fault diagnosis and failure prognosis, as well as hybrid systems. The reader will gain knowledge of fault detection and isolation in complex systems including those with hybrid nature, and will learn state-of-the-art developments in theory and technologies of fault diagnosis and failure prognosis for complex systems.




Fault Diagnosis of Dynamic Systems


Book Description

Fault Diagnosis of Dynamic Systems provides readers with a glimpse into the fundamental issues and techniques of fault diagnosis used by Automatic Control (FDI) and Artificial Intelligence (DX) research communities. The book reviews the standard techniques and approaches widely used in both communities. It also contains benchmark examples and case studies that demonstrate how the same problem can be solved using the presented approaches. The book also introduces advanced fault diagnosis approaches that are currently still being researched, including methods for non-linear, hybrid, discrete-event and software/business systems, as well as, an introduction to prognosis. Fault Diagnosis of Dynamic Systems is valuable source of information for researchers and engineers starting to work on fault diagnosis and willing to have a reference guide on the main concepts and standard approaches on fault diagnosis. Readers with experience on one of the two main communities will also find it useful to learn the fundamental concepts of the other community and the synergies between them. The book is also open to researchers or academics who are already familiar with the standard approaches, since they will find a collection of advanced approaches with more specific and advanced topics or with application to different domains. Finally, engineers and researchers looking for transferable fault diagnosis methods will also find useful insights in the book.




Fault Detection and Diagnosis Using Hybrid Artificial Neural Network Based Method


Book Description

This thesis proposes a novel approach to fault detection and diagnosis (FDD) that is focused on artificial neural network (ANN). Unlike traditional methods for FDD, neural networks can take advantage of large amounts of complex process data and extract core features to help detect and diagnose faults. In the first part of this work, a hybrid model was developed to improve efficiency and feasibility of neural networks by combining Kernel Principal Analysis (kPCA) and deep neural network. The hybrid model was successfully validated by Tennessee Eastman Process. The second part of the research focuses on a specific application to gas leak detection and classification. In this scenario, a convolutional network (ConvNet) was used as a feature extraction tool prior to network training due to the visual nature of data. The model was shown to accurately predict leaks and leak sizes; furthermore, further model optimizations were performed and evaluated. The proposed approach is superior to other FDD approaches due to its performance and optimization flexibility.




Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems


Book Description

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. - Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications - Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more - Gives numerical and simulation results in each chapter to reflect engineering practices




Fault Diagnosis Method Based on Improved Evidence Reasoning


Book Description

Evidence reasoning (ER) combined with dimensionless index method can be used in rotating machinery fault diagnosis. In ER algorithm, reliability is mainly obtained in two ways: distance-based method and correlation measure by set theory. In practice, the distance-based method cannot generate high-discrimination reliability in high-coincidence data like dimensionless index data. Therefore, correlation measure by set theory method is used in fault diagnosis more frequently. Because correlation measure by set theory only considers upper bound and lower bound of fault data, we add a regularization term to calculate the relationship between the inner data. Experience result shows that fault diagnosis accuracy had improved, which illustrates that the new reliability can describe data relationship better




Chemical Process Design, Simulation and Optimization


Book Description

The book presents a series of articles devoted to modeling, simulation, and optimization of processes, mainly chemical. General methods for process modeling and numerical simulation are described with flowsheeting. Population balances are addressed in detail with application to crystal production; energy saving is frequently optimized, including exergy analysis. The coupling between process simulation and computational fluid dynamics is studied for air classification and bubble columns. Pressure swing adsorption, reactive distillation, and nanofiltration are explained in general and applied to particular processes. The synthesis of carbon dots is solved by the design of experiments method. A safety study addresses the consequences of gas explosion.