Polyethylene Terephthalate Production Process - Cost Analysis - PET E11A


Book Description

This report presents a cost analysis of Polyethylene Terephthalate (PET) production from ethylene glycol and purified terephthalic acid (PTA). The process examined is a typical melt-phase polymerization followed by solid-state polymerization. In this process, initially an oligomer intermediate is produced by the esterification of PTA with ethylene glycol. The oligomer then undergoes a melt-polymerization and a solid-state polymerization, leading to a bottle grade PET. This report was developed based essentially on the following reference(s): (1) "Polyesters, Thermoplastic", Kirk-Othmer Encyclopedia of Chemical Technology, 5th edition (2) "Polyesters", Ullmann's Encyclopedia of Industrial Chemistry, 7th edition Keywords: Thermoplastic Polymer, Polyester, High Intrinsic Viscosity, Melt-Phase Polycondensation




Recycling of Polyethylene Terephthalate Bottles


Book Description

Recycling of Polyethylene Terephthalate Bottles provides an overview of PET chemistry, highlighting the main degradation, depolymerization processes and pathways of PET, along with the applications of recycled monomers derived from PET waste. The latest methodologies of recycling and feedstock recovery are covered, providing critical foundational information. In addition, the book discusses a range of established methods of polymer recycling, with an emphasis on real world industrial case studies and the latest academic research. Users will find in-depth lifecycle and cost analysis of each waste management method, comparing the suitability and feasibility of each to support the decision -making process. Polyethylene Terephthalate (PET) is the most recycled plastic in the world, but still represents a significant amount of landfill waste. This book presents an update on new regulations, providing recommendations for new opportunities in this area, including new processing methods and applications for recycled PET. Features a comprehensive introduction to the waste management of PET bottles, from regulatory concerns, to the range of different methods of materials recovery Enables practitioners to choose the most efficient and effective waste management process Includes detailed lifecycle and cost analysis information Compares traditional thermal recycling methods with more recently developed monomer recovery and chemical recycling methods




Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites


Book Description

Poly(Ethylene Terephthalate) (PET) is an industrially important material which is not treated specifically in any other book. Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites fills this gap and systematically guides the reader through all aspects of PET and its blends, composites and nanocomposites. It covers theoretical fundamentals, nanocomposites preparation, modification techniques, structure-property relationships, characterisation of the different blends and composites, and material choice for specific applications. Consisting of contributions from experts in the field this book is a useful reference for the researchers and engineers working on the development and characterization of PET materials as well as on implementing them in real-world products. It can also be used as a standard reference for deeper insight in the mechanical, thermal, thermo-mechanical and visco-elastic aspects in product design decisions. Provides a systematic overview on all types of poly(ethylene) terephthalate (PET) based blends, composites and nanocomposites Informs about characterization, structure-property relationships and types of modifications Links material properties to specific applications, enabling engineers to make the best material choice to increase product performance and cost efficiency, in industries ranging from aerospace to energy




Polyethylene Terephthalate Production Process - Cost Analysis - PET E12A


Book Description

This report presents a cost analysis of Polyethylene Terephthalate (PET) production from ethylene glycol and purified terephthalic acid (PTA). The process examined is similar to Invista NG3 process. In this process, PET oligomers are first polymerized in a melt-phase step, and then passed through a solid-state polymerization step. This report was developed based essentially on the following reference(s): US Patents 5786443 and 5730913, both issued to DuPont in 1998 (both assigned to Invista in 2004) Keywords: Thermoplastic Polymer, Polyester, High Intrinsic Viscosity, Melt-Phase Polycondensation




Recycling of Polyethylene Terephthalate


Book Description

Polyethylene terephthalate (PET) is the most recycled plastic in the world. This book covers all from the world market of PET to the many technologies and processes developed for separation, decontamination, recycling and manufacturing into food-grade and non-food-grade products of PET. Also, regulations, testing methods and analytical procedures according to the current regulatory framework are presented.




Engineering Thermoplastics


Book Description




Handbook of Thermoplastic Polyesters


Book Description

The book covers current knowledge on all aspects of polyester synthesis, structure, properties (chemical, physical and application relevant) and recycling. The most important technical polyesters are presented in detailed chapters, homogeneous polymers as well as copolymers, blends and high-performance reinforced polyester materials are discussed. This book is directed to chemists, physicists and engineers working in research, development and application of polymers.







Modern Polyesters


Book Description

Provides an overview of the family of polyester polymers which comprise an important group of plastics that span the range of commodity polymers to engineering resins. It describes the preparation, properties and applications of polyesters. Readers will also find details on polyester-based elastomers, biodegradable aliphatic polyester, liquid crystal polyesters and unsaturated polyesters for glass-reinforced composites. Presents an overview of the most recent developments. Explores synthesis, catalysts, processes, properties and applications. Looks at emerging polyester materials as well as existing ones. Written by foremost experts from both academia and industry, ensuring that both fundamentals and practical applications are covered.