Process Modeling, Simulation, and Control for Chemical Engineers


Book Description

The purpose of this book is to convey to undergraduate students an understanding of those areas of process control that all chemical engineers need to know. The presentation is concise, readable and restricted to only essential elements. The methods presented have been successfully applied in industry to solve real problems. Analysis of closedloop dynamics in the time, Laplace, frequency and sample-data domains are covered. Designing simple regulatory control systems for multivariable processes is discussed. The practical aspects of process control are presented sizing control valves, tuning controllers, developing control structures and considering interaction between plant design and control. Practical simple identification methods are covered.




Process Modeling and Simulation for Chemical Engineers


Book Description

This book provides a rigorous treatment of the fundamental concepts and techniques involved in process modeling and simulation. The book allows the reader to: (i) Get a solid grasp of “under-the-hood” mathematical results (ii) Develop models of sophisticated processes (iii) Transform models to different geometries and domains as appropriate (iv) Utilize various model simplification techniques (v) Learn simple and effective computational methods for model simulation (vi) Intensify the effectiveness of their research Modeling and Simulation for Chemical Engineers: Theory and Practice begins with an introduction to the terminology of process modeling and simulation. Chapters 2 and 3 cover fundamental and constitutive relations, while Chapter 4 on model formulation builds on these relations. Chapters 5 and 6 introduce the advanced techniques of model transformation and simplification. Chapter 7 deals with model simulation, and the final chapter reviews important mathematical concepts. Presented in a methodical, systematic way, this book is suitable as a self-study guide or as a graduate reference, and includes examples, schematics and diagrams to enrich understanding. End of chapter problems with solutions and computer software available online at www.wiley.com/go/upreti/pms_for_chemical_engineers are designed to further stimulate readers to apply the newly learned concepts.




Chemical Engineering Process Simulation


Book Description

Chemical Engineering Process Simulation, Second Edition guides users through chemical processes and unit operations using the main simulation software used in the industrial sector. The book helps predict the characteristics of a process using mathematical models and computer-aided process simulation tools, as well as how to model and simulate process performance before detailed process design takes place. Content coverage includes steady-state and dynamic simulation, process design, control and optimization. In addition, readers will learn about the simulation of natural gas, biochemical, wastewater treatment and batch processes. Provides an updated and expanded new edition that contains 60-70% new content Guides readers through chemical processes and unit operations using the primary simulation software used in the industrial sector Covers the fundamentals of process simulation, theory and advanced applications Includes case studies of various difficulty levels for practice and for applying developed skills Features step-by-step guides to using UniSim Design, SuperPro Designer, Symmetry, Aspen HYSYS and Aspen Plus for process simulation novices







Modeling and Simulation of Chemical Process Systems


Book Description

In this textbook, the author teaches readers how to model and simulate a unit process operation through developing mathematical model equations, solving model equations manually, and comparing results with those simulated through software. It covers both lumped parameter systems and distributed parameter systems, as well as using MATLAB and Simulink to solve the system model equations for both. Simplified partial differential equations are solved using COMSOL, an effective tool to solve PDE, using the fine element method. This book includes end of chapter problems and worked examples, and summarizes reader goals at the beginning of each chapter.




Process Modelling and Simulation in Chemical, Biochemical and Environmental Engineering


Book Description

The use of simulation plays a vital part in developing an integrated approach to process design. By helping save time and money before the actual trial of a concept, this practice can assist with troubleshooting, design, control, revamping, and more. Process Modelling and Simulation in Chemical, Biochemical and Environmental Engineering explores ef




Process Modeling, Simulation, and Control for Chemical Engineers


Book Description

The purpose of this book is to convey to undergraduate students an understanding of those areas of process control that all chemical engineers need to know. The presentation is concise, readable and restricted to only essential elements. The methods presented have been successfully applied in industry to solve real problems. Analysis of closedloop dynamics in the time, Laplace, frequency and sample-data domains are covered. Designing simple regulatory control systems for multivariable processes is discussed. The practical aspects of process control are presented sizing control valves, tuning controllers, developing control structures and considering interaction between plant design and control. Practical simple identification methods are covered.




A Step by Step Approach to the Modeling of Chemical Engineering Processes


Book Description

This book treats modeling and simulation in a simple way, that builds on the existing knowledge and intuition of students. They will learn how to build a model and solve it using Excel. Most chemical engineering students feel a shiver down the spine when they see a set of complex mathematical equations generated from the modeling of a chemical engineering system. This is because they usually do not understand how to achieve this mathematical model, or they do not know how to solve the equations system without spending a lot of time and effort. Trying to understand how to generate a set of mathematical equations to represent a physical system (to model) and solve these equations (to simulate) is not a simple task. A model, most of the time, takes into account all phenomena studied during a Chemical Engineering course. In the same way, there is a multitude of numerical methods that can be used to solve the same set of equations generated from the modeling, and many different computational languages can be adopted to implement the numerical methods. As a consequence of this comprehensiveness and combinatorial explosion of possibilities, most books that deal with this subject are very extensive and embracing, making need for a lot of time and effort to go through this subject. It is expected that with this book the chemical engineering student and the future chemical engineer feel motivated to solve different practical problems involving chemical processes, knowing they can do that in an easy and fast way, with no need of expensive software.




Modeling and Simulation in Chemical Engineering


Book Description

This book presents a theoretical analysis of the modern methods used for modeling various chemical engineering processes. Currently, the two primary problems in the chemical industry are the optimal design of new devices and the optimal control of active processes. Both of these problems are often solved by developing new methods of modeling. These methods for modeling specific processes may be different, but in all cases, they bring the mathematical description closer to the real processes by using appropriate experimental data. In this book, the authors detail a new approach for the modeling of chemical processes in column apparatuses. Further, they describe the types of neural networks that have been shown to be effective in solving important chemical engineering problems. Readers are also presented with mathematical models of integrated bioethanol supply chains (IBSC) that achieve improved economic and environmental sustainability. The integration of energy and mass processes is one of the most powerful tools for creating sustainable and energy efficient production systems. This book defines the main approaches for the thermal integration of periodic processes, direct and indirect, and the recent integration of small-scale solar thermal dryers with phase change materials as energy accumulators. An exciting overview of new approaches for the modeling of chemical engineering processes, this book serves as a guide for the important innovations being made in theoretical chemical engineering.




Process Analysis and Simulation in Chemical Engineering


Book Description

This book offers a comprehensive coverage of process simulation and flowsheeting, useful for undergraduate students of Chemical Engineering and Process Engineering as theoretical and practical support in Process Design, Process Simulation, Process Engineering, Plant Design, and Process Control courses. The main concepts related to process simulation and application tools are presented and discussed in the framework of typical problems found in engineering design. The topics presented in the chapters are organized in an inductive way, starting from the more simplistic simulations up to some complex problems.