Materials Processing


Book Description

Materials Processing is the first textbook to bring the fundamental concepts of materials processing together in a unified approach that highlights the overlap in scientific and engineering principles. It teaches students the key principles involved in the processing of engineering materials, specifically metals, ceramics and polymers, from starting or raw materials through to the final functional forms. Its self-contained approach is based on the state of matter most central to the shaping of the material: melt, solid, powder, dispersion and solution, and vapor. With this approach, students learn processing fundamentals and appreciate the similarities and differences between the materials classes. The book uses a consistent nomenclature that allow for easier comparisons between various materials and processes. Emphasis is on fundamental principles that gives students a strong foundation for understanding processing and manufacturing methods. Development of connections between processing and structure builds on students' existing knowledge of structure-property relationships. Examples of both standard and newer additive manufacturing methods throughout provide students with an overview of the methods that they will likely encounter in their careers. This book is intended primarily for upper-level undergraduates and beginning graduate students in Materials Science and Engineering who are already schooled in the structure and properties of metals, ceramics and polymers, and are ready to apply their knowledge to materials processing. It will also appeal to students from other engineering disciplines who have completed an introductory materials science and engineering course. - Coverage of metal, ceramic and polymer processing in a single text provides a self-contained approach and consistent nomenclature that allow for easier comparisons between various materials and processes - Emphasis on fundamental principles gives students a strong foundation for understanding processing and manufacturing methods - Development of connections between processing and structure builds on students' existing knowledge of structure - property relationships - Examples of both standard and newer additive manufacturing methods throughout provide students with an overview of the methods that they will likely encounter in their careers







Breakfast Cereals and How They Are Made


Book Description

Breakfast Cereals and How They Are Made: Raw Materials, Processing, and Production, Third Edition, covers the transformation of a cereal grain across the supply chain with oversight of the entire lifecycle – from ingredient, to finished product. The book provides essential Information for food product developers on the effect of ingredients and process conditions on breakfast cereal quality. All aspects of the processing of cereals grains into finished products is covered, from batching and cooking, toasting and tempering, coating, the inclusion of additional ingredients, and packaging information. In addition, the book covers the chemistry and economics of cereal crops. Essential reading for all product developers working in the cereal industry, this book will also be of interest to academic researchers and postgraduate students in both cereal science and food processing. - Provides an up-to-date, end-to-end overview of the production process of cereal products - Edited by active cereals researchers working in industry, with experts from both academia and industry supplying content - Includes essential information on both ingredients and processes in the production of breakfast cereals - Discusses materials, cooking and packaging - Includes nutrition, quality and safety




Biobased Industrial Products


Book Description

Petroleum-based industrial products have gradually replaced products derived from biological materials. However, biologically based products are making a comebackâ€"because of a threefold increase in farm productivity and new technologies. Biobased Industrial Products envisions a biobased industrial future, where starch will be used to make biopolymers and vegetable oils will become a routine component in lubricants and detergents. Biobased Industrial Products overviews the U.S. land resources available for agricultural production, summarizes plant materials currently produced, and describes prospects for increasing varieties and yields. The committee discusses the concept of the biorefinery and outlines proven and potential thermal, mechanical, and chemical technologies for conversion of natural resources to industrial applications. The committee also illustrates the developmental dynamics of biobased products through existing examples, as well as products still on the drawing board, and it identifies priorities for research and development.




The Science and Regulations of Naturally Derived Complex Drugs


Book Description

This volume in the AAPS Advances series covers various quality, safety and clinical aspects of drug development that are relevant to new and/or generic drugs containing a complex mixture of molecules. Specific topics discussed include: raw materials sourcing; manufacturing controls; characterization; identification of critical product quality components and attributes; identification of impurities, particularly as they bear on toxicity and immunogenicity; clinical trial study design considerations, and the regulatory science applications to development of such complex mixtures. Complex mixtures are challenging to characterize and analyze using standard methods. Further challenges extend throughout the product development cycle from raw material control to clinical study design. The regulatory landscape is rapidly changing as new types of complex mixtures are introduced into clinical trials and to the market (e.g., traditional Chinese medicines and medical marijuana products), while older products are facing generic competition for the first time (e.g., enoxaparin). The future outlook for complex generic drug products, as opposed to the more commonly developed targeted single agent drug products is not clear. The risks pertaining to lack of a full understanding of raw material control, process and controls in manufacture, as well as characterization of a complex mixture were seen vividly during the heparin crisis of 2008. As such powerful lessons have been learned about the regulatory science specific to complex products. The Science and Regulations of Naturally Derived Complex Drugs addresses the interests among industry, academics, and government on the issues surrounding the future development of mixtures for medicinal use.




Polymer Science and Engineering


Book Description

Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues. Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications. The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymersâ€"plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatingsâ€"and how their composition and specific methods of processing result in unparalleled usefulness. The reader can also learn the science behind the technology, including efforts to model polymer synthesis after nature's methods, and breakthroughs in characterizing polymer properties needed for twenty-first-century applications. This informative volume will be important to chemists, engineers, materials scientists, researchers, industrialists, and policymakers interested in the role of polymers, as well as to science and engineering educators and students.




Unit Manufacturing Processes


Book Description

Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.




Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value


Book Description

Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value examines the use of biomass as a raw material, including terrestrial and aquatic sources to obtain extracts (e.g. polyphenols), biofuels, and/or intermediates (furfural, levulinates) through chemical and biochemical processes. The book also covers the production of natural polymers using biomass and the biosynthetic process, cellulose modified by biochemical and chemical methods, and other biochemicals that can be used in the synthesis of various pharmaceuticals. Featuring case studies, discussions of sustainability, and nanomedical, biomedical, and pharmaceutical applications, Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value is a crucial resource for biotechnologists, biochemical engineers, biochemists, microbiologists, and research students in these areas, as well as entrepreneurs, policy makers, stakeholders, and politicians. - Reviews biomass resources and compounds with bioactive properties - Describes chemical and biochemical processes for creating biofuels from biomass - Outlines production of polysaccharides and cellulose derivatives - Features applications in the fields of medicine and pharmacy




Raw Materials for Future Energy Supply


Book Description

This is the first book that analyses the future raw materials supply from the demand side of a society that chiefly relies on renewable energies, which is of great significance for us all. It addresses primary and secondary resources and substitution, not only from technical but also socioeconomic and ethical points of view. The “Energiewende” (Energy Transition) will change our consumption of natural resources significantly. When in future our energy requirements will be covered mostly by wind, solar power and biomass, we will need less coal, oil and natural gas. However, the consumption of minerals, especially metallic resources, will increase to build wind generators, solar panels or energy storage facilities. Besides e.g. copper, nickel or cobalt, rare earth elements and other high-tech elements will be increasingly used. With regard to primary metals, Germany is 100 % import dependent; only secondary material is produced within Germany. Though sufficient geological primary resources exist worldwide, their availability on the market is crucial. The future supply of the market is dependent on the development of prices, the transparency of the market and the question of social and ethical standards in the raw materials industry, as well as the social license to operate, which especially applies to mining. The book offers a valuable resource for everyone interested in the future raw material supply of our way of life, which will involve more and more renewable energies.




Raw Material


Book Description

Analyzes the intertwined metaphoric language of capitalism and disease in nineteenth-century England.