Processing, Structure and Properties of Block Copolymers


Book Description

Block copolymers represent an important class of multi-phase material, which have received very widespread attention, particularly since their successful commercial development in the mid-1960s. Much of the interest in these polymers has arisen because of their rather remarkable micro phase morphology and, hence, they have been the subject of extensive microstructural examination. In many respects, the quest for a comprehensive interpretation of their structure, both theoretically and experimentally, has not been generally matched by a corresponding enthusiasm for developing structure/property relationships in the context of their commercial application. Indeed, it has been left largely to the industrial companies involved in the development and utilization of these materials to fulfil this latter role. While it is generally disappointing that a much greater synergism does not exist between science and technology, it is especially sad in the case of block copolymers. Thus these materials offer an almost unique opportunity for the application of fundamental structural and property data to the interpretation of the properties of generally processed artefacts. Accordingly, in this book, the editor has drawn together an eminent group of research workers, with the specific intention of highlighting some of those aspects of the science and technology of block copolymers that are potentially important if further advances are to be made either in material formulation or utilization. For example, special consideration is given to the relationship between the flow properties of block copo lymers and their microstructure.




Processing, Structure and Properties of Block Copolymers


Book Description

Block copolymers represent an important class of multi-phase material, which have received very widespread attention, particularly since their successful commercial development in the mid-1960s. Much of the interest in these polymers has arisen because of their rather remarkable micro phase morphology and, hence, they have been the subject of extensive microstructural examination. In many respects, the quest for a comprehensive interpretation of their structure, both theoretically and experimentally, has not been generally matched by a corresponding enthusiasm for developing structure/property relationships in the context of their commercial application. Indeed, it has been left largely to the industrial companies involved in the development and utilization of these materials to fulfil this latter role. While it is generally disappointing that a much greater synergism does not exist between science and technology, it is especially sad in the case of block copolymers. Thus these materials offer an almost unique opportunity for the application of fundamental structural and property data to the interpretation of the properties of generally processed artefacts. Accordingly, in this book, the editor has drawn together an eminent group of research workers, with the specific intention of highlighting some of those aspects of the science and technology of block copolymers that are potentially important if further advances are to be made either in material formulation or utilization. For example, special consideration is given to the relationship between the flow properties of block copo lymers and their microstructure.




Block Copolymers


Book Description

A summary of block copolymer chemical structures and synthesis. It discusses physical methods of characterization such as computer simulation, microhardness, dielectric spectroscopy, thermal mechanical relaxation, ultrasonic characterization, transmission electron microscopy, X-ray scattering, and NMR, among others. It also outlines rheological and




Polymer Morphology


Book Description

With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials




Process–Structure–Properties in Polymer Additive Manufacturing


Book Description

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is an exciting field and has great potential in transformative and translational research in many fields, such as biomedical, aerospace, and even electronics. Current methods for polymer AM include material extrusion, material jetting, vat polymerisation, and powder bed fusion. With the promise of more applications, detailed understanding of AM—from the processability of the feedstock to the relationship between the process–structure–properties of AM parts—has become more critical. More research work is needed in material development to widen the choice of materials for polymer additive manufacturing. Modelling and simulations of the process will allow the prediction of microstructures and mechanical properties of the fabricated parts while complementing the understanding of the physical phenomena that occurs during the AM processes. In this book, state-of-the-art reviews and current research are collated, which focus on the process–structure–properties relationships in polymer additive manufacturing.




Multicomponent Polymers


Book Description

The book introduces fundamental principles, phase structure, mechanism, mechanical properties, and different types of multicomponent polymers. Rheological properties, graft copolymers, block copolymers and interpenetrating polymer networks are discussed in detail as well. With abundant illustrations, it is an essential reference for polymer chemists, material scientists and graduate students.




Soft-Matter Characterization


Book Description

This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.




The Physics of Glassy Polymers


Book Description

Since the publication of the first edition of The Physics of Glassy Polymers there have been substantial developments in both the theory and application of polymer physics, and many new materials have been introduced. Furthermore, in this large and growing field of knowledge, glassy polymers are of particular interest because of their homogeneous structure, which is fundamentally simpler than that of crystalline or reinforced materials. This new edition covers all these developments, including the emergence of the polymer molecule with its multiplicity of structure and conformations as the major factor controlling the properties of glassy polymers, using the combined knowledge of a distinguished team of contributors. With an introductory chapter covering the established science in the subject are and summarising concepts assumed in the later chapters, this fully revised and updated second edition is an essential work of reference for those involved in the field.




Handbook of Condensation Thermoplastic Elastomers


Book Description

Reporting on the work of an international team of scientists actively involved in the study of thermoplastic elastomers (TPE) based on polyesters, polyamides, and polyurethanes, this book is the first to provide a detailed description of condensation TPE with close attention paid to polyamide-based systems. Reflecting the increasing importance of TPE as engineering plastics, the authors discuss the widened application opportunities by preparing systems with various chemical compositions and molecular structures as (semi-) interpenetrating networks. The contents also cover the chemical aspects, physical structure and properties, life cycle assessment, and recycling possibilities as well as such unique "smart" properties like the shape memory effect of the three classes of thermoplastic elastomers.




An Introduction to Plastics


Book Description

This second edition of An Introduction to Plastics is the answer to manifold requests for an updated version by the readership. Since publication of the first edition in 1993, the field of plastics has seen tremendous development. Their manufacture and properties are discussed and correlated to the molecular and supermolecular properties of polymers. The contents have been thoroughly revised, restructured and enlarged. Several topics such as polymer composites and mixtures, morphology, flow properties and processing have been given more space, and chapters on electrical conductivity and non-linear optical properties have been newly added. Reviews of the first edition: "This book presents a precise, yet non-mathematical introduction to plastics, their raw materials, syntheses, properties and applications." (B. Sillion, Revue de l'Institut Francais du Pétrole) "The volume is excellently written, with a simple, straightforward and comprehensive index. It provides an overview of all plastics, including raw materials: manufacture, structure, processing, properties and, of course, applications" (D.W. Taylor and J.F. Kennedy, Polymer International) "This book has all the earmarks of becoming a guide to or even a reference book for polymers in structural applications" (Willi Kreuder, Acta Polymerica)