Handbook of Energy Efficiency and Renewable Energy


Book Description

Brought to you by the creator of numerous bestselling handbooks, the Handbook of Energy Efficiency and Renewable Energy provides a thorough grounding in the analytic techniques and technological developments that underpin renewable energy use and environmental protection. The handbook emphasizes the engineering aspects of energy conservation and renewable energy. Taking a world view, the editors discuss key topics underpinning energy efficiency and renewable energy systems. They provide content at the forefront of the contemporary debate about energy and environmental futures. This is vital information for planning a secure energy future. Practical in approach, the book covers technologies currently available or expected to be ready for implementation in the near future. It sets the stage with a survey of current and future world-wide energy issues, then explores energy policies and incentives for conservation and renewable energy, covers economic assessment methods for conservation and generation technologies, and discusses the environmental costs of various energy generation technologies. The book goes on to examine distributed generation and demand side management procedures and gives a perspective on the efficiencies, economics, and environmental costs of fossil and nuclear technologies. Highlighting energy conservation as the cornerstone of a successful national energy strategy, the book covers energy management strategies for industry and buildings, HVAC controls, co-generation, and advances in specific technologies such as motors, lighting, appliances, and heat pumps. It explores energy storage and generation from renewable sources and underlines the role of infrastructure security and risk analysis in planning future energy transmission and storage systems. These features and more make the Handbook of Energy Efficiency and Renewable Energy the tool for designing the energy sources of the future.




Energy Conversion


Book Description

Discussing methods for maximizing available energy, Energy Conversion surveys the latest advances in energy conversion from a wide variety of currently available energy sources. The book describes energy sources such as fossil fuels, biomass including refuse-derived biomass fuels, nuclear, solar radiation, wind, geothermal, and ocean, then provides the terminology and units used for each energy resource and their equivalence. It includes an overview of the steam power cycle, gas turbines, internal combustion engines, hydraulic turbines, Stirling engines, advanced fossil fuel power systems, and combined-cycle power plants. It outlines the development, current use, and future of nuclear fission. The book also gives a comprehensive description of the direct energy conversion methods, including, Photovoltaics, Fuel Cells, Thermoelectric conversion, Thermionics and MHD It briefly reviews the physics of PV electrical generation, discusses the PV system design process, presents several PV system examples, summarizes the latest developments in crystalline silicon PV, and explores some of the present challenges facing the large scale deployment of PV energy sources. The book discusses five energy storage categories: electrical, electromechanical, mechanical, direct thermal, and thermochemical and the storage media that can store and deliver energy. With contributions from researchers at the top of their fields and on the cutting edge of technologies, the book provides comprehensive coverage of end use efficiency of green technology. It includes in-depth discussions not only of better efficient energy management in buildings and industry, but also of how to plan and design for efficient use and management from the ground up.




Anaerobic Digestion of Solid Waste


Book Description

There is no description available for this title




Energy Efficiency and Renewable Energy Handbook


Book Description

For the Movers, Shakers, and Policy Makers in Energy Engineering and Related IndustriesThe latest version of a bestselling reference, Energy Efficiency and Renewable Energy Handbook, Second Edition covers the foremost trends and technologies in energy engineering today. This new edition contains the latest material on energy planning and policy, wi




Decision-Maker's Guide to Solid-Waste Management


Book Description

This Guide has been developed particularly for solid waste management practitioners, such as local government officials, facility owners and operators, consultants, and regulatory agency specialists. Contains technical and economic information to help these practitioners meet the daily challenges of planning, managing, and operating municipal solid waste (MSW) programs and facilities. The Guide's primary goals are to encourage reduction of waste at the source and to foster implementation of integrated solid waste management systems that are cost-effective and protect human health and the environment. Illustrated.




Focus on Biotechnology Research


Book Description

Biotechnology is a collection of technologies that capitalise on the attributes of cells and biological molecules. Biotechnology will help improve the ability to customise therapies based on individual genomics; prevent, diagnose, and treat all types of diseases rather than rely on rescue therapy and provide breakthroughs in agricultural production and food safety. This book offers new research in this growing field.




Biomethanization of the Organic Fraction of Municipal Solid Wastes


Book Description

Biomethanization of the Organic Fraction of Municipal Solid Wastes is a comprehensive introduction to both the fundamentals and the more practical aspects of the anaerobic digestion of organic solid wastes, particularly those derived from households, that is, the organic fraction of municipal solid wastes (OFMSW). It can be used as a textbook for specialized courses and also as a guide for practitioners. In the first part, the book covers the relevant aspects of anaerobic digestion (AD) of organic wastes. The fundamentals and kinetic aspects of AD are reviewed with particular emphasis on the aspects related to solid wastes. This introduction is necessary to have a comprehensive view of the AD process and to understand the practical principles as well as the origin of possible problems arising from the management of the process. Chapter 2 emphasizes the role of kinetics in designing the reactor, paying special attention to existing models, particularly the dynamic ones. Through this introduction, it is intended to facilitate the technology transfer from laboratory or pilot plant experiences to full-scale process, in order to implement improvements in current digesters. Laboratory methods are described for the analysis and optimization of reactor performance, such as methanogenic activity tests or experimental evaluation of the biodegradation kinetics of solid organic waste. The different reaction patterns applied to industrial reactors are outlined. Industrial reactors are classified in accordance with the system they use, pointing out advantages and limitations. Co-digestion, enabling the co-treatment of organic wastes of different origin in a more economically feasible way, is described in detail. Examples of co-digestion are given, with OFMSW as a base-substrate. Finally, full-scale co-digestion plants are discussed. Various types (mechanical, biological, physico-chemical) of pre-treatment to increase the biodegradability, and thus the yields of the process, are reviewed in detail. The use of the fermentation products of anaerobic digesters for biological nutrient removal processes in wastewater treatment plants is described. This constitutes an example of integrated waste management, a field in which both economic and technical advances can be achieved. Balances are given to justify the approach, and a full-scale case study is presented. The important topic of economics and the ecological advantages of the process are emphasized. The use of compost, the integration with composting technology, and advantages over other technologies are detailed in the framework of an environmental impact assessment of biowaste treatment. Finally, the anaerobic digestion of MSW in landfills is reviewed in detail, with emphasis on landfill process enhancement and strategies for its application.




Current Abstracts


Book Description




Practical Handbook of Processing and Recycling Municipal Waste


Book Description

If we could understand the scientific and engineering principles behind recycling, our ability to use reprocessed materials would improve considerably. If we could then apply those principles, our efforts to process and recycle waste would be significantly more efficient and cost-effective. Practical Handbook of Processing and Recycling Municipal Waste provides all of the information necessary for vastly improving the way we recycle materials. It first develops basic engineering and scientific theories related to processing and recycling municipal waste. The authors then show how the behavioral characteristics of waste can actually be predicted with some degree of accuracy, hence turning waste disposal engineering from a matter of guesswork into a science. From Europe to the United States to the Far East, humankind understands the need for - and the challenges of - recycling and reusing waste. This handbook is the guide to successful, efficient waste processing and reuse.