Product Analytics


Book Description

Use Product Analytics to Understand Consumer Behavior and Change It at Scale Product Analytics is a complete, hands-on guide to generating actionable business insights from customer data. Experienced data scientist and enterprise manager Joanne Rodrigues introduces practical statistical techniques for determining why things happen and how to change what people do at scale. She complements these with powerful social science techniques for creating better theories, designing better metrics, and driving more rapid and sustained behavior change. Writing for entrepreneurs, product managers/marketers, and other business practitioners, Rodrigues teaches through intuitive examples from both web and offline environments. Avoiding math-heavy explanations, she guides you step by step through choosing the right techniques and algorithms for each application, running analyses in R, and getting answers you can trust. Develop core metrics and effective KPIs for user analytics in any web product Truly understand statistical inference, and the differences between correlation and causation Conduct more effective A/B tests Build intuitive predictive models to capture user behavior in products Use modern, quasi-experimental designs and statistical matching to tease out causal effects from observational data Improve response through uplift modeling and other sophisticated targeting methods Project business costs/subgroup population changes via advanced demographic projection Whatever your product or service, this guide can help you create precision-targeted marketing campaigns, improve consumer satisfaction and engagement, and grow revenue and profits. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.




Lean Analytics


Book Description

Whether you're a startup founder trying to disrupt an industry or an entrepreneur trying to provoke change from within, your biggest challenge is creating a product people actually want. Lean Analytics steers you in the right direction. This book shows you how to validate your initial idea, find the right customers, decide what to build, how to monetize your business, and how to spread the word. Packed with more than thirty case studies and insights from over a hundred business experts, Lean Analytics provides you with hard-won, real-world information no entrepreneur can afford to go without. Understand Lean Startup, analytics fundamentals, and the data-driven mindset Look at six sample business models and how they map to new ventures of all sizes Find the One Metric That Matters to you Learn how to draw a line in the sand, so you'll know it's time to move forward Apply Lean Analytics principles to large enterprises and established products




Deep Data Analytics for New Product Development


Book Description

This book presents and develops the deep data analytics for providing the information needed for successful new product development. Deep Data Analytics for New Product Development has a simple theme: information about what customers need and want must be extracted from data to effectively guide new product decisions regarding concept development, design, pricing, and marketing. The benefits of reading this book are twofold. The first is an understanding of the stages of a new product development process from ideation through launching and tracking, each supported by information about customers. The second benefit is an understanding of the deep data analytics for extracting that information from data. These analytics, drawn from the statistics, econometrics, market research, and machine learning spaces, are developed in detail and illustrated at each stage of the process with simulated data. The stages of new product development and the supporting deep data analytics at each stage are not presented in isolation of each other, but are presented as a synergistic whole. This book is recommended reading for analysts involved in new product development. Readers with an analytical bent or who want to develop analytical expertise would also greatly benefit from reading this book, as well as students in business programs.




Building Products for the Enterprise


Book Description

If you’re new to software product management or just want to learn more about it, there’s plenty of advice available—but most of it is geared toward consumer products. Creating high-quality software for the enterprise involves a much different set of challenges. In this practical book, two expert product managers provide straightforward guidance for people looking to join the thriving enterprise market. Authors Blair Reeves and Benjamin Gaines explain critical differences between enterprise and consumer products, and deliver strategies for overcoming challenges when building for the enterprise. You’ll learn how to cultivate knowledge of your organization, the products you build, and the industry you serve. Explore why: Identifying customer vs user problems is an enterprise project manager’s main challenge Effective collaboration requires in-depth knowledge of the organization Analyzing data is key to understanding why users buy and retain your product Having experience in the industry you’re building products for is valuable Product longevity depends on knowing where the industry is headed




Enterprise Analytics


Book Description

"International Institute for Analytics"--Dust jacket.




Pricing Analytics


Book Description

The theme of this book is simple. The price – the number someone puts on a product to help consumers decide to buy that product – comes from data. Specifically, itcomes from statistically modeling the data. This book gives the reader the statistical modeling tools needed to get the number to put on a product. But statistical modeling is not done in a vacuum. Economic and statistical principles and theory conjointly provide the background and framework for the models. Therefore, this book emphasizes two interlocking components of modeling: economic theory and statistical principles. The economic theory component is sufficient to provide understanding of the basic principles for pricing, especially about elasticities, which measure the effects of pricing on key business metrics. Elasticity estimation is the goal of statistical modeling, so attention is paid to the concept and implications of elasticities. The statistical modeling component is advanced and detailed covering choice (conjoint, discrete choice, MaxDiff) and sales data modeling. Experimental design principles, model estimation approaches, and analysis methods are discussed and developed for choice models. Regression fundamentals have been developed for sales model specification and estimation and expanded for latent class analysis.




Analytics at Work


Book Description

As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical.




Advances in Business, Operations, and Product Analytics


Book Description

If you're seeking to master business analytics, case studies offer invaluable help: they expose you to the entire decision-making process, helping you practice an active role in both performing analysis and using its output to recommend optimal decisions. Now, drawing on his extensive teaching and consulting experience, Prof. Matthew Drake has created the ideal new casebook for all analytics students and practitioners. Drake, author of the widely-praised Applied Business Analytics Casebook, now presents a collection of up-to-date cases that are longer and more detailed than those typically presented in undergraduate texts, but concise and focused enough to be taught in a single classroom session. Organized by analytical technique, Advances in Business, Operations, and Product Analytics covers: Descriptive analytics: descriptive statistics, sampling/inferential statistics, statistical quality control, and probability Predictive analytics: forecasting, demand managing, data and text mining Prescriptive analytics: optimization-based modeling, simulation-based modeling, decision analysis, and multi-criteria decision making Industry-specific analytics: HR and managerial analytics, financial analytics, and healthcare/life sciences In addition to practitioners, this casebook will be especially valuable to students and faculty in undergraduate and masters' courses that cover topics in business analytics, and courses applying analytics to specific industries such as healthcare, or specific business functions such as marketing.




Predictive Analytics


Book Description

"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a




Practical Web Analytics for User Experience


Book Description

Practical Web Analytics for User Experience teaches you how to use web analytics to help answer the complicated questions facing UX professionals. Within this book, you'll find a quantitative approach for measuring a website's effectiveness and the methods for posing and answering specific questions about how users navigate a website. The book is organized according to the concerns UX practitioners face. Chapters are devoted to traffic, clickpath, and content use analysis, measuring the effectiveness of design changes, including A/B testing, building user profiles based on search habits, supporting usability test findings with reporting, and more. This is the must-have resource you need to start capitalizing on web analytics and analyze websites effectively. - Discover concrete information on how web analytics data support user research and user-centered design - Learn how to frame questions in a way that lets you navigate through massive amounts of data to get the answer you need - Learn how to gather information for personas, verify behavior found in usability testing, support heuristic evaluation with data, analyze keyword data, and understand how to communicate these findings with business stakeholders