Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources


Book Description

Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources: Status and Innovation covers all important technological aspects of the production of biochemicals from renewable feedstock. All the important technological aspects of biomass conversion for example biomass pretreatment, enzymatic hydrolysis for cellulosic sugars production followed by the fermentation into chemicals and downstream recovery of the products is reviewed. Recent technological advancements in suitable microorganism development, bioprocess engineering for biomass conversion for cellulosic sugars production and various fermentation strategies and downstream recovery of these top 12 products is presented. Each bio-chemical selected by US Department of Energy i.e. ethanol, xylitol/sorbitol, furans (5-HMF, 2,5-FDCA,), glycerol & its derivatives, hydrocarbons) isoprene, iso-butadienes and others), lactic acid, succinic acid, 3-hydroxy propionic acid, levulinic acid and biohydrogen/biogas is included in a single book chapter. In addition to the technical aspects of these 12 biochemicals, general technological challenges dealing with lignocellulose refining, perspectives and solutions are elaborated in the book. Also, life cycle analysis, techno-economic viability, and sustainability index of biofuels/biochemicals are comprehensively reviewed in the book. - covers uniquely designed scientific and technical literature on USDOE top listed biochemicals production with clear images and tables in the context of biomass valorisation - Includes the clear and simplistic illustration of technological updates on biomass processing, system biology, microbial fermentation, catalysis, regeneration and monitoring of renewable energy and chemicals production - Presents fast and reliable source of information on techno-economic analysis, life cycle analysis, technological scouting at industrial scale - Entails fundamental aspects, recent developments in production of renewable chemicals as building block materials for commodity chemicals production




Bioethanol: A Green Energy Substitute for Fossil Fuels


Book Description

This book looks deeply into the prospects for using ethanol as a greener alternative to fossil fuels and the technical and scientific issues that surround them. Ethanol, with its numerous advantages, has emerged as a promising contender to replace gasoline as a fuel source. Currently, it is commercially available as a blend with gasoline, commonly known as E10 and E25, utilizing various ratios of ethanol. Despite its clear benefits over gasoline, the widespread adoption of ethanol as a fuel remains hindered by its limited availability. In this insightful book, we aim to explore the multifaceted challenges surrounding ethanol's full integration into our energy landscape, employing a comprehensive approach through review manuscripts. Leading worldwide experts, known for their deep understanding of ethanol as a fuel, have contributed to the book. Their valuable insights and contributions enrich the book's content, offering readers a comprehensive exploration of the subject matter. This book is a compelling resource for researchers, energy professionals, and anyone interested in understanding the challenges and opportunities associated with the integration of ethanol as a substitute for gasoline.




Current Advances in Biotechnological Production of Xylitol


Book Description

This book explores recent advances in the microbial production of xylitol and its applications in food and medical sector. Xylitol is an important biomolecule from lignocellulose biorefinery which is produced from the xylose by chemical reactions or microbial fermentation methods. Currently, the demand of xylitol at commercial scale is being met through chemical methods. However, recent breakthroughs made in plant cell wall destruction, genetic engineering to develop the designer microorganisms, fermentation methods and media formulations and downstream processing have led the ways for sustainable production of xylitol at commercial scale in lignocellulose biorefineries. Microbial production of xylitol is preferred over the chemical processes as it is environmentally friendly, higher process efficiency with the desired product yield, and product recovery with minimum impurities. This book is a unique compilation of 11 book chapters written by experts in their respective fields. These chapters present critical insights and discuss the current progress and future progress in this area into fermentative xylitol production. Chapter 9 is licensed under the terms of the Creative Commons Attribution 4.0 International License. For further details see license information in the chapter.










New Materials for a Circular Economy


Book Description

A circular and environment-friendly economy could displace the linear economy as it is in use around the world. This would involve enlarged life cycles for products, and an increase in the efficiency of electric and electronic devices. The generation of new materials will be essential, as well as materials recycling or conversion after use. This book discusses new ways of production, management, recycling and conversion of new and regular materials. Keywords: Microplastics, Lignocellulose-Based Materials, Food Packaging, Biorefinery, Solar Energy, Reused Materials, Recycling of Plastics, Biopolymers, Composites, Polymeric Systems, CO2 Capture, Anticorrosive Polymeric Coatings, Metallic Structures, Scrap for New Steel, Nanomaterials, Waste from Electronic Components, Future of Cars, Raw Materials, Biomaterials, Bioeconomy, Circular Bioeconomy, Polymeric Electrolytes, Fuel Cells.




Biofuels and Sustainability


Book Description

Biofuels and Sustainability: Life-cycle Assessments, System Biology, Policies, and Emerging Technologies presents the current progress and challenges related to the sustainability of biofuels. Addressing a wide range of issues, the book examines the methods and technologies, policies for sustainable biofuels, impacts of advanced fuels, recent advances, and future research prospects. Reflecting new developments, emphasis is given to new biological/biochemical approaches that offer the most efficient, cost-effective, and sustainable strategies for biofuel production. Divided into five parts, the first provides an overview of biofuels, the need for alternate fuels, carbon footprints, life cycle assessments, environmental aspects, various generations of biofuels, biofuel production from lignocellulosic material, and artificial intelligence in biofuel production. Part 2 examines the various methods and technologies for biofuels production, with case studies from the USA, UK, and Brazil. Part 3 explores the policies for sustainable biofuels, including current standards, with applications from the USA, European Union, Asia, and Africa. Part 4 analyses the impacts of advanced fuels in the decarbonization of transport, climate change mitigation, sustainable agriculture, and water resources, with perspectives from developed and developing countries. Finally, Part 5 critically reviews the recent advances and future research prospects related to termites, insects, metabolic engineering, microorganisms, and bioreactors. - Provides carbon footprints and lifecycle assessments of biofuel and bioproduct production from 2nd and 3rd generation feedstocks and compliance with the international standards - Highlights the emerging applications of systems biology in biofuel and bioenergy production, including biomimetics and protein engineering - Analyzes the sustainable production of biofuels at various stages, such as feedstock production, biomass pre-treatment and novel bioprospection - Explains the technological challenges of biofuel production, designing novel bioreactors, and value-added processing of biofuel residues - Discusses and analyses biofuel and bioenergy policies from various countries and various regions of the world




Sustainable Valorization of Agriculture & Food Waste Biomass


Book Description

This edited book focuses on agricultural and food waste biomass valorization in various fields such as energy and environment and the development of several other value-added products. The chapters in this book cover different areas like sources of agricultural and food wastes, recent trends on waste utilization, innovations and sustainability of techniques, and challenges associated with valorization of wastes. In the last few decades, scientists and researchers of different countries predicted that waste material generated due to global problems can be used as a potential feeding material for the manufacturing of different valuable products. Hence, there is a need for more research and development of several other value-added products from waste materials. Proper utilization of these waste materials has been discussed in this book. It also covers the bioactive recovery from food waste, health benefits of extracted bioactive, and utilization of valorized products. The book also explores future technological challenges and sustainability issues. This title is a great resource for environmental and chemical engineers, food scientists, food researchers and technologists, as well as for students and professionals working in this field.




Handbook of Solvents, Volume 2


Book Description

This 4th edition of Handbook of Solvents, Volume 2, contains the most comprehensive information ever published on solvents as well as an extensive analysis of the principles of solvent selection and use. The book begins with a discussion of solvents used in over 30 industries which are the main consumers of solvents. The analysis is conducted based on the available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. Picking up where Handbook of Solvents, Volume 1 leaves off, Handbook of Solvents Volume 2 provides information on the methods of analysis of solvents and materials containing solvents, with 2 sections containing standard and special methods of solvent analysis, followed by a discussion of residual solvents left in the final products. The environmental impact of solvents, such as their fate and movement in the water, soil, and air, fate-based management of solvent-containing wastes, and ecotoxicological effects are discussed as are solvents' impact on tropospheric air pollution. The next 2 chapters are devoted to the toxicology of solvents and regulations aiming to keep solvent toxicity under control. The analysis of the concentration of solvents in more than 15 industries, specific issues related to the paint industry, and characteristics of the environment in automotive collision repair shops are followed by a thorough discussion of regulations in the USA and Europe. Following chapters show examples of solvent substitution by safer materials, with an emphasis on supercritical solvents, ionic liquids, deep eutectic solvents, and agriculture-based products, such as ethyl lactate. Discussion of solvent recycling, removal, and degradation includes absorptive solvent recovery, comparison of results of recovery and incineration, and application of solar photocatalytic oxidation. The book concludes with an evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils. - Assists in solvent selection by providing key information and insight on environmental and safety issues - Provides essential best practice guidance for human health consideration - Discusses the latest advances and trends in solvent technology, including modern methods of cleaning contaminated soils, selection of gloves, suits, and respirators




Laser-Assisted Machining


Book Description

LASER-ASSISTED MACHINING This unique book develops exhaustive engineering perceptions of different laser-assisted techniques, reviews the engineering context of different laser fabrication techniques, and describes the application of laser-assisted fabrication techniques. Lasers are essential in the area of material processing because they can produce coherent beams with little divergence. The fabrication process known as surface cladding includes joining (soldering, welding), material removal (laser-aided drilling, cutting, etc.), deformation (extrusion, bending), and material addition. Some remarkable advantages of laser-assisted material development include faster processing rates and preservation of essential alloying components. However, the lack of widespread understanding of various material phenomena and how laser parameters affect them prevents the technology from being widely accepted on an industrial scale. Among the subjects Laser-Assisted Machining covers include high-powered lasers in material processing applications, laser-based joining of metallic and non-metallic materials, direct laser cladding, laser surface processing, laser micro and nano processing, emerging laser materials processing techniques, solid-state lasers, laser cutting, drilling and piercing, laser welding, laser bending or forming, laser cleaning, laser automation and in-process sensing, femtosecond laser micromachining, laser-assisted micro-milling/grinding, laser-assisted jet electrochemical micro-machining, laser-assisted water jet micro-machining, hybrid laser-electrochemical micromachining process, quill and nonreciprocal ultrafast laser writing, laser surface engineering, ultrashort pulsed laser surface texturing, laser interference patterning systems, laser interference lithography, laser-guided discharge texturing. Audience The book will be used by researchers in the fields of manufacturing technology and materials science as well as engineers and high-level technicians for a better understanding of various innovative and novel techniques to cope with the need of micromachining, as well as microfabrication industries for successful implementation of microproduct manufacturing.