Controlled/living Radical Polymerization


Book Description

Recent progress in the field of controlled/living radical polymerization.







Controlled/living Radical Polymerization


Book Description

This book examines recent progress in controlled/living radical polymerization. The volume focuses on three synthetic methods: atom transfer radical polymerization, nitroxide mediated polymerization and degenerative transfer via addition fragmentation. In addition, the volume covers the preparation and characterization of many never before seen materials using ATRP, NMP and RAFT.




Sustainable Polymers from Biomass


Book Description

Offering a unique perspective summarizing research on this timely important topic around the globe, this book provides comprehensive coverage of how molecular biomass can be transformed into sustainable polymers. It critically discusses and compares a few classes of biomass - oxygen-rich, hydrocarbon-rich, hydrocarbon and non-hydrocarbon (including carbon dioxide) as well as natural polymers - and equally includes products that are already commercialized. A must-have for both newcomers to the field as well as established researchers in both academia and industry.




Controlled Radical Polymerization


Book Description

This book and the following volume (1188: Controlled Radical Polymerization: Materials) are addressed to chemists and polymer scientists interested in radical processes, and especially in controlled/living radical polymerization. The chapters in this first volume summarize the most recent advances in the field, including mechanistic, materials, and applications aspects. Controlled/living radical polymerization (CRP) or reversible-deactivation radical polymerization (RDRP, as recommended by IUPAC) is among the most rapidly expanding areas of chemistry and polymer science. This first volume provides an overview of the current status of controlled/living radical polymerization (CRP) systems, and also discusses important issues relevant to all radical polymerization methods. The mechanistic and kinetic aspects of ATRP are also covered, as well as more complex mechanisms such as "hybrid" processes. Thirty-seven chapters published in two volumes show that there have been significant developments in CRP over the last 15 years. New systems have been discovered; substantial progress has been achieved in understanding the mechanism and kinetics of reactions involved in all CRP systems. As a result of these advances, significant progress has been made towards developing a comprehensive relationship between molecular structure and macroscopic properties. Several commercial applications of CRP have been announced and it is anticipated that new products made by CRP will soon be on the market.




The Chemistry of Radical Polymerization


Book Description

The Chemistry of Radical Polymerization, Third Edition, is completely updated with the latest trends, terminology, and applications in this fast-moving field. This comprehensive reference contains crucial foundational information that will help users understand the factors which control radical polymerization, along with practical content to support the design of polymer syntheses, and critical evaluation of the latest developments and their impact on research and practice. Covering vital processes that chemistry researchers, practitioners, and advanced students need to know, the book includes new content on the growing area of heterogeneous polymerization, including emulsion, miniemulsion, microemulsion, and dispersion polymerization. This new edition also explores recent progress in methods of control, including those not based on reversible deactivation radical polymerization or living radical polymerization. The coverage of RAFT polymerization has also been thoroughly updated to match the current IUPAC recommendation as well as to correspond with this exciting area of active research. Offers valuable training for graduates in polymer chemistry and is a key reference for researchers and practitioners in radical polymerization Features substantial updates and expansion of key chapters on controlled and living polymerization, reflecting the considerable growth and advances in the field Includes a completely new chapter on heterogeneous polymerization




Handbook of Polymer Synthesis, Characterization, and Processing


Book Description

Covering a broad range of polymer science topics, Handbook of Polymer Synthesis, Characterization, and Processing provides polymer industry professionals and researchers in polymer science and technology with a single, comprehensive handbook summarizing all aspects involved in the polymer production chain. The handbook focuses on industrially important polymers, analytical techniques, and formulation methods, with chapters covering step-growth, radical, and co-polymerization, crosslinking and grafting, reaction engineering, advanced technology applications, including conjugated, dendritic, and nanomaterial polymers and emulsions, and characterization methods, including spectroscopy, light scattering, and microscopy.




Controlled and Living Polymerizations


Book Description

Written by a highly prestigious and knowledgeable team of top scientists in the field, this book provides an overview of the current status of controlled/living polymerization, combining the synthetic, mechanistic and application-oriented aspects. From the contents: * Anionic Vinyl Polymerization * Carbocationic Polymerization * Radical Polymerization * Coordinative Polymerization of Olefins * Ring-Opening Polymerization of Heterocycles * Ring-Opening Metathesis Polymerization * Macromolecular Architectures * Complex Functional Macromolecules * Synthesis of Block and Graft Copolymers * Bulk and Solution Structures of Block Copolymers * Industrial Applications While some of the material is based on chapters taken from the four-volume work "Macromolecular Engineering", it is completely updated and rewritten to reflect the focus of this monograph. Must-have knowledge for polymer and organic chemists, plastics technologists, materials scientists and chemical engineers.