Progress in Ecological Stoichiometry


Book Description

Ecological stoichiometry concerns the way that the elemental composition of organisms shapes their ecology. It deals with the balance or imbalance of elemental ratios and how that affects organism growth, nutrient cycling, and the interactions with the biotic and abiotic worlds. The elemental composition of organisms is a set of constraints through which all the Earth’s biogeochemical cycles must pass. All organisms consume nutrients and acquire compounds from the environment proportional to their needs. Organismal elemental needs are determined in turn by the energy required to live and grow, the physical and chemical constraints of their environment, and their requirements for relatively large polymeric biomolecules such as RNA, DNA, lipids, and proteins, as well as for structural needs including stems, bones, shells, etc. These materials together constitute most of the biomass of living organisms. Although there may be little variability in elemental ratios of many of these biomolecules, changing the proportions of different biomolecules can have important effects on organismal elemental composition. Consequently, the variation in elemental composition both within and across organisms can be tremendous, which has important implications for Earth’s biogeochemical cycles. It has been over a decade since the publication of Sterner and Elser’s book, Ecological Stoichiometry (2002). In the intervening years, hundreds of papers on stoichiometric topics ranging from evolution and regulation of nutrient content in organisms, to the role of stoichiometry in populations, communities, ecosystems and global biogeochemical dynamics have been published. Here, we present a collection of contributions from the broad scientific community to highlight recent insights in the field of Ecological Stoichiometry.




Ecological Stoichiometry


Book Description

All life is chemical. That fact underpins the developing field of ecological stoichiometry, the study of the balance of chemical elements in ecological interactions. This long-awaited book brings this field into its own as a unifying force in ecology and evolution. Synthesizing a wide range of knowledge, Robert Sterner and Jim Elser show how an understanding of the biochemical deployment of elements in organisms from microbes to metazoa provides the key to making sense of both aquatic and terrestrial ecosystems. After summarizing the chemistry of elements and their relative abundance in Earth's environment, the authors proceed along a line of increasing complexity and scale from molecules to cells, individuals, populations, communities, and ecosystems. The book examines fundamental chemical constraints on ecological phenomena such as competition, herbivory, symbiosis, energy flow in food webs, and organic matter sequestration. In accessible prose and with clear mathematical models, the authors show how ecological stoichiometry can illuminate diverse fields of study, from metabolism to global change. Set to be a classic in the field, Ecological Stoichiometry is an indispensable resource for researchers, instructors, and students of ecology, evolution, physiology, and biogeochemistry. From the foreword by Peter Vitousek: ? "[T]his book represents a significant milestone in the history of ecology. . . . Love it or argue with it--and I do both--most ecologists will be influenced by the framework developed in this book. . . . There are points to question here, and many more to test . . . And if we are both lucky and good, this questioning and testing will advance our field beyond the level achieved in this book. I can't wait to get on with it."




Ecometabolomics


Book Description

Ecometabolomics: Metabolic Fluxes versus Environmental Stoichiometry focuses on the interaction between plants—particularly plants that have vigorous secondary metabolites—and the environment. The book offers a comprehensive overview of the responses of the metabolome of organisms to biotic and abiotic environmental changes. It includes an introduction to metabolomics, summaries of metabolomic techniques and applications, studies of stress in plants, and insights into challenges. This is a must-have reference for plant biologists, plant biochemists, plant ecologists and phytochemists researching the interface between plants and the environment using metabolomics. - Provides an in-depth overview of the basics of the discipline, including non-targeted analysis and quantification of plant metabolites - Outlines the applications of various analytical techniques in comprehending the total metabolome of the organism - Covers both NMR and MS-based approaches




Stream Ecosystems in a Changing Environment


Book Description

Stream Ecosystems in a Changing Environment synthesizes the current understanding of stream ecosystem ecology, emphasizing nutrient cycling and carbon dynamics, and providing a forward-looking perspective regarding the response of stream ecosystems to environmental change. Each chapter includes a section focusing on anticipated and ongoing dynamics in stream ecosystems in a changing environment, along with hypotheses regarding controls on stream ecosystem functioning. The book, with its innovative sections, provides a bridge between papers published in peer-reviewed scientific journals and the findings of researchers in new areas of study. - Presents a forward-looking perspective regarding the response of stream ecosystems to environmental change - Provides a synthesis of the latest findings on stream ecosystems ecology in one concise volume - Includes thought exercises and discussion activities throughout, providing valuable tools for learning - Offers conceptual models and hypotheses to stimulate conversation and advance research




Unifying Ecology Across Scales: Progress, Challenges and Opportunities


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Phosphorus


Book Description

Phosphorus is essential to the production of our food, and it also triggers algal blooms in lakes, rivers, and oceans when it slips through our hands. An understanding of this essential resource and how we have used and misused it over the years is crucial to the sustainability of our well-being on our planet. In this book, world authorities on phosphorus sustainability Jim Elser and Phil Haygarth explain this element's involvement in biology, human health and nutrition, food production, ecosystem function, and environmental sustainability. Phosphorus chronicles the sustainability challenges phosphorus both poses and solves in various contexts. The book begins with its discovery over 350 years ago, moving to its basic chemistry and the essential role it plays in all living things on Earth. Chapters go on to explain the rise in the usage of phosphorus in agriculture and how the increase in the mining of rock phosphate in the mid-20th century was essential for the Green Revolution. However, phosphorus emissions from human wastes and detergents triggered widespread algal blooms in the 1960s and 1970s. While such emissions have been brought under better control with wastewater treatment, diffuse emissions from farming continue to cause water quality degradation. The authors explain how these diffuse phosphorus emissions may worsen with climate change. In ten concise chapters, Elser and Haygarth offer engaging explanations of our historical use and abuse of phosphorus, including the phosphorus sustainability movement and new efforts to sustain food benefits of limited rock reserves following the phosphate rock price shock in 2007-2008. Highlighting new approaches for phosphorus, the two "Systems Innovators" turn toward the emerging set of sustainable phosphorus solutions necessary to achieve a sustainable "phosphoheaven" and avoid "phosphogeddon." The book provides an insider's take on this essential resource and why all of us need to wrestle with the wicked problems this element will cause, illuminate, or eliminate in years to come.







Complex Ecology


Book Description

From climate change to species extinction, humanity is confronted with an increasing array of societal and environmental challenges that defy simple quantifiable solutions. Complexity-based ecology provides a new paradigm for ecologists and conservationists keen to embrace the uncertainty that is pressed upon us. This book presents key research papers chosen by some sixty scholars from various continents, across a diverse span of sub-disciplines. The papers are set alongside first person commentary from many of the seminal voices involved, offering unprecedented access to experts' viewpoints. The works assembled also shed light on the process of science in general, showing how the shifting of wider perspectives allows for new ideas to take hold. Ideal for undergraduate and advanced students of ecology and conservation, their educators and those working across allied fields, this is the first book of its kind to focus on complexity-based approaches and provides a benchmark for future collected volumes.




Physiological Ecology


Book Description

Unlocking the puzzle of how animals behave and how they interact with their environments is impossible without understanding the physiological processes that determine their use of food resources. But long overdue is a user-friendly introduction to the subject that systematically bridges the gap between physiology and ecology. Ecologists--for whom such knowledge can help clarify the consequences of global climate change, the biodiversity crisis, and pollution--often find themselves wading through an unwieldy, technically top-heavy literature. Here, William Karasov and Carlos Martínez del Rio present the first accessible and authoritative one-volume overview of the physiological and biochemical principles that shape how animals procure energy and nutrients and free themselves of toxins--and how this relates to broader ecological phenomena. After introducing primary concepts, the authors review the chemical ecology of food, and then discuss how animals digest and process food. Their broad view includes symbioses and extends even to ecosystem phenomena such as ecological stochiometry and toxicant biomagnification. They introduce key methods and illustrate principles with wide-ranging vertebrate and invertebrate examples. Uniquely, they also link the physiological mechanisms of resource use with ecological phenomena such as how and why animals choose what they eat and how they participate in the exchange of energy and materials in their biological communities. Thoroughly up-to-date and pointing the way to future research, Physiological Ecology is an essential new source for upper-level undergraduate and graduate students-and an ideal synthesis for professionals. The most accessible introduction to the physiological and biochemical principles that shape how animals use resources Unique in linking the physiological mechanisms of resource use with ecological phenomena An essential resource for upper-level undergraduate and graduate students An ideal overview for researchers




Handbook of Graphs and Networks


Book Description

Complex interacting networks are observed in systems from such diverse areas as physics, biology, economics, ecology, and computer science. For example, economic or social interactions often organize themselves in complex network structures. Similar phenomena are observed in traffic flow and in communication networks as the internet. In current problems of the Biosciences, prominent examples are protein networks in the living cell, as well as molecular networks in the genome. On larger scales one finds networks of cells as in neural networks, up to the scale of organisms in ecological food webs. This book defines the field of complex interacting networks in its infancy and presents the dynamics of networks and their structure as a key concept across disciplines. The contributions present common underlying principles of network dynamics and their theoretical description and are of interest to specialists as well as to the non-specialized reader looking for an introduction to this new exciting field. Theoretical concepts include modeling networks as dynamical systems with numerical methods and new graph theoretical methods, but also focus on networks that change their topology as in morphogenesis and self-organization. The authors offer concepts to model network structures and dynamics, focussing on approaches applicable across disciplines.