Materials Science and Engineering


Book Description

Building on the success of previous editions, this book continues to provide engineers with a strong understanding of the three primary types of materials and composites, as well as the relationships that exist between the structural elements of materials and their properties. The relationships among processing, structure, properties, and performance components for steels, glass-ceramics, polymer fibers, and silicon semiconductors are explored throughout the chapters. The discussion of the construction of crystallographic directions in hexagonal unit cells is expanded. At the end of each chapter, engineers will also find revised summaries and new equation summaries to reexamine key concepts.




Materials Science and Engineering for the 1990s


Book Description

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.




Advances in Materials Science Research


Book Description

Advances in Materials Science Research. Volume 37 begins by discussing the main properties of poly (methyl methacrylate) bone cements used for orthopaedic surgery. In particular, emphasis is given to the fillers used to modify the solid phase of acrylic formulations, and this strategy is related to changes in their mechanical, biological, and clinical properties. Following this, the authors describe studies on the radiopaque agents of bone cements from 1960 to today. This research is divided into several time frames: 1960-1990, 1990-2000, 2000-2010, and 2010-2018. An outlook for the future studies is also provided. A recent literature analysis in the field of spray pyrolysis production methods is presented, including the respective equipment requirements and the versatility of the materials. Examples of the application of ultrasonic spray nebulizers, laser and plasma atomizers are also provided. Next, a facile spray pyrolysis from a precursor solution with an ammonium additive is introduced to prepare porous nanostructured vanadium pentoxides. The correlation between porous structures and electrochemical properties of the PN-V2O5 electrodes was systematically investigated on rechargeable lithium batteries. Furthermore, some challenges are presented on the design of porous materials produced by spray pyrolysis for the application of lithium sulfur batteries. The authors discuss research on non-contact and non-destructive systems that excite surface acoustic waves using pulsed lasers and detect surface acoustic waves using laser Doppler detectors to observe the changes in the physical properties of the substrate surface. The concluding study focuses on the availability of modified epoxidized palm oil as pressure sensitive adhesives in medical applications. Epoxidized palm oil has been modified to two modifications of acrylation and maleination. Thus, there are requirements need to be met for pressure sensitive adhesive formulation before the curing process.




Materials in Progress


Book Description

New materials and technologies play a significant role in architecture and design. Environmentally compatible materials and production methods are demanded just as much as smoothly functioning recycling management. In addition, trends like digitalization, 3D printing and intelligent systems and materials have a decisive influence on material innovations. The book’s eight chapters span a bridge from science and industrial research to applications in architecture and design. In a compact format, it offers a well-grounded overview of the latest material innovations, including edible packaging, liquid light and intelligent natural materials. At the same time, the societal dimension of such developments is taken into consideration.




Materials Research to Meet 21st-Century Defense Needs


Book Description

In order to achieve the revolutionary new defense capabilities offered by materials science and engineering, innovative management to reduce the risks associated with translating research results will be needed along with the R&D. While payoff is expected to be high from the promising areas of materials research, many of the benefits are likely to be evolutionary. Nevertheless, failure to invest in more speculative areas of research could lead to undesired technological surprises. Basic research in physics, chemistry, biology, and materials science will provide the seeds for potentially revolutionary technologies later in the 21st century.




Advances in Material Science


Book Description

Selected peer-reviewed full text papers from the International Conference on Advances in Material Science (ICAMS 2020) Selected, peer-reviewed papers from the International Conference on Advances in Material Science (ICAMS 2020), October 3, 2020, Pune, India




Advances in Materials Science Research


Book Description

This volume includes six chapters and presents some of the latest advancements in materials science research. Chapter One describes the structural characterization, the polyelectrolyte properties and the proton dynamics of imidazole-based materials, with special emphasis on the application for proton conductors, gene delivery systems, pollutant adsorbents, fluorescent sensors and OLED technologies. Chapter Two details various characteristics of polyethylene terephthalate fiber. Chapter Three explains the foundation of photonic crystals from one-dimension to higher-order and introduces topological ideas in photonic crystals. Chapter Four includes research on production, properties and applications of polyethylene terephthalate. Chapter Five explores the potential application of antimonene as an anode material in sodium-ion batteries. Finally, Chapter Six summarizes recent advances on the role of fullerene additions for structural behaviors of thermoplastic matrices.




Advances in Materials Science and Engineering


Book Description

This volume contains the selected papers resulting from the 7th Annual International Workshop on Materials Science and Engineering, and is focusing on the following six aspects: 1. Various Materials Properties, Processing, and Manufactures; 2. Multifunctional Materials Properties, Processing, and Manufactures; 3. Nanomaterials and Biomaterials; 4. Civil Materials and Sustainable Environment; 5. Electrochemical Valuation, Fracture Resistance, and Assessment; 6. Designs Related to Materials Science and Engineering. This proceeding presents and discusses key concepts and analyzes the state-of-the-art of the field. IWMSE 2021 is an academic conference in a series held once per year. The conference not only provides insights on materials science and engineering, but also affords conduit for future research in these fields. It provides opportunities for the delegates to exchange new ideas and application experiences, to establish business or research relations and to find global partners for future collaboration.







Materials Science Research Trends


Book Description

Materials science includes those parts of chemistry and physics that deal with the properties of materials. It encompasses four classes of materials, the study of each of which may be considered a separate field: metals; ceramics; polymers and composites. Materials science is often referred to as materials science and engineering because it has many applications. Industrial applications of materials science include processing techniques (casting, rolling, welding, ion implantation, crystal growth, thin-film deposition, sintering, glassblowing, etc), analytical techniques (electron microscopy, x-ray diffraction, calorimetry, nuclear microscopy (HEFIB) etc.), materials design, and cost/benefit tradeoffs in industrial production of materials. This new book presents new leading-edge research in the field.