Progress in Nano-Electro Optics III


Book Description

This unique monograph series "Progress in Nano-Electro Optics" reviews the results of advanced studies of electro-optics on the nanometric scale. This third volume covers the most recent topics of theoretical and experimental interest including classical and quantum optics, organic and inorganic material science and technology, surface science, spectroscopy, atom manipulation, photonics, and electronics. The first two volumes addressed the "Basics and Theory of Near Field Optics" (2002) and "Novel Devices and Atom Manipulation" (2003).




Progress in Nano-Electro-Optics V


Book Description

Focusing on nanophotonics, which has been proposed by M. Ohtsu in 1993, this volume begins with theories for operation principles of characteristic nanophotonic devices and continues with novel optical near field phenomena for fabricating nanophotonic devices. Further topics include: unique properties of optical near fields and their applications to operating nanophotonic devices; and nanophotonic information and communications systems that can overcome the integration-density limit with ultra-low-power operation as well as unique functionalities. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.




Progress in Nano-Electro Optics IV


Book Description

This volume focuses on the characterization of nano-optical materials and optical near-field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.




Progress in Nano-Electro-Optics II


Book Description

This second and concluding volume of Progress in Nano-Electro-Optics focuses on applications to novel devices and atom manipulation. Part II addresses the latest developments in nano-optical techniques, forming a valuable resource for engineers and scientists working in the field of nano-electro-optics.




Progress in Nano-Electro-Optics VII


Book Description

This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.




Progress in Nano-Electro-Optics VI


Book Description

This volume focuses on nano-optical probing, manipulation, and analysis. It begins with recent developments in near-field optical spectroscopy that clarify quantum states at the nanoscale, followed by a theory for a photon-electron-phonon interacting system at the nanoscale. Further topics include: visible laser desorption/ionization mass spectroscopy exhibiting near-field effects; a practical nanofabrication method with optical near fields applied to a SHG device; a theory and experimental achievements on optical transport of nanoparticles, selectively manipulated by resonant radiation force. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.




Optical Microresonators


Book Description

Optical Micro-Resonators are an exciting new field of research that has gained prominence in the past few years due to the emergence of new fabrication technologies. This book is the first detailed text on the theory, fabrication, and applications of optical micro-resonators, and will be found useful by both graduate students and researchers in the field.




Optical Interconnects


Book Description

Optical Interconnects provides a fascinating picture of the state of the art in optical interconnects and a perspective on what can be expected in the near future. It is composed of selected reviews authored by world leaders in the field, and these reviews are written from either an academic or industrial viewpoint. An in-depth discussion of the path towards fully-integrated optical interconnects in microelectronics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of microelectronics and optoelectronics.




Microoptics


Book Description

Microoptics is still an emerging field with a huge potential for a large number of applications. This monograph brings together the most recent developments in order to give a broad overview.