Progress in Physics, vol. 4/2009


Book Description

Progress in Physics has been created for publications on advanced studies in theoretical and experimental physics, including related themes from mathematics.




Progress in Physics, vol. 4/2010


Book Description

Progress in Physics has been created for publications on advanced studies in theoretical and experimental physics, including related themes from mathematics.




Progress in Physics, vol. 4/2013


Book Description

The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics




The Physics of Reality


Book Description

A truly Galilean-class volume, this book introduces a new method in theory formation, completing the tools of epistemology. It covers a broad spectrum of theoretical and mathematical physics by researchers from over 20 nations from four continents. Like Vigier himself, the Vigier symposia are noted for addressing avant-garde, cutting-edge topics in contemporary physics. Among the six proceedings honoring J.-P. Vigier, this is perhaps the most exciting one as several important breakthroughs are introduced for the first time. The most interesting breakthrough in view of the recent NIST experimental violations of QED is a continuation of the pioneering work by Vigier on tight bound states in hydrogen. The new experimental protocol described not only promises empirical proof of large-scale extra dimensions in conjunction with avenues for testing string theory, but also implies the birth of the field of unified field mechanics, ushering in a new age of discovery. Work on quantum computing redefines the qubit in a manner that the uncertainty principle may be routinely violated. Other breakthroughs occur in the utility of quaternion algebra in extending our understanding of the nature of the fermionic singularity or point particle. There are several other discoveries of equal magnitude, making this volume a must-have acquisition for the library of any serious forward-looking researchers.




Physics and Speculative Philosophy


Book Description

Through both an historical and philosophical analysis of the concept of possibility, we show how including both potentiality and actuality as part of the real is both compatible with experience and contributes to solving key problems of fundamental process and emergence. The book is organized into four main sections that incorporate our routes to potentiality: (1) potentiality in modern science [history and philosophy; quantum physics and complexity]; (2) Relational Realism [ontological interpretation of quantum physics; philosophy and logic]; (3) Process Physics [ontological interpretation of relativity theory; physics and philosophy]; (4) on speculative philosophy and physics [limitations and approximations; process philosophy]. We conclude that certain fundamental problems in modern physics require complementary analyses of certain philosophical and metaphysical issues, and that such scholarship reveals intrinsic features and limits of determinism, potentiality and emergence that enable, among others, important progress on the quantum theory of measurement problem and new understandings of emergence.




Progress in Physics, vol. 2/2017


Book Description

The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics




The Story of Helium and the Birth of Astrophysics


Book Description

What if one of the most thrilling stories in the history of science turned out to be wrong? Can urban legends creep into the hallowed grounds of scientific history? As incredible as it may sound, the story of one of the most important elements in modern times – helium - has been often misrepresented in books, encyclopedias, and online sources, despite the fact that archival materials tell a different story. Open the entry for Helium in any encyclopaedia and you will read a false story that has been repeated over the years. ‘Encyclopaedia Britannica’, for example, says that helium was discovered by the French astronomer Pierre Janssen while observing a total solar eclipse from India in 1868. Apparently he noticed something new in the spectrum of the sun, which he thought was the signature of an undiscovered element. The truth is that Janssen never saw any sign of a new element during his observations in India. His reports and letters do not mention any such claim. Other sources would have you believe that helium was jointly discovered by Janssen and Norman Lockyer, a British scientist, and that their discovery letters reached Paris the same day, one sent from India, and the other from England. Again, the truth is completely different. Two letters from Lockyer and Janssen did reach Paris the same day in 1868, but their letters did not mention any new element. What they had discovered was a new way of observing the Sun without a solar eclipse. This would ultimately lead to the discovery of helium, in which Lockyer would play a prominent role, but not Janssen. At the same time, Norman Robert Pogson, a disgruntled British astronomer stationed in India did notice something peculiar during the eclipse. He was the first one to notice something odd about the spectrum of the Sun that day, and his observations would prove crucial to Lockyer’s own investigations of helium. But Pogson’s report was never published in any peer reviewed journal and it languished on the desk of a local British officer in colonial India. This book tells the real story behind the discovery of helium, along with biographical sketches of the scientists and descriptions of the milieu in which they worked. It will convey the excitement, confusion, and passion of nineteenth century scientists, using their own words, from their letters and reports. “The Story of Helium and the Birth of Astrophysics” chronicles one of the most exciting discoveries ever made and explains why it also marked the birth of a new branch of science called ‘astrophysics.’




A Journey into Quantization in Astrophysics


Book Description

The present book consists of 17 select scientific papers from ten years of work around 2003-2013. The topic covered here is quantization in Astrophysics. We also discuss other topics for instance Pioneer spacecraft anomaly. We discuss a number of sub-topics, for instance the use of Schrödinger equation to describe celestial quantization. Our basic proposition here is that the quantization of planetary systems corresponds to quantization of circulation as observed in superfluidity. And then we extend it further to the use of (complex) Ginzburg-Landau equation to describe possible nonlinearity of planetary quantization. The present book is suitable for young astronomers and astrophysicists as well as for professional astronomers who wish to update their knowledge in the vast topic of quantization in astrophysics. This book is also suitable for college students who want to know more about this subject.




Progress in Physics, vol. 3/2011


Book Description

The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics




Conscious Action Theory


Book Description

Conscious Action Theory provides a logical unification between the spirit and the material, by identifying reality as an event that processes personal experiences into explanatory memories, from which personal experiences are regenerated in a never-ending cycle of activity. Baer explores the idea that our personal feelings are undeniable facts that have been systematically excluded from the basic sciences, thereby leaving us with a schizophrenic division between objective materialism and spiritual idealism. Cognitive Action Theory (CAT) achieves this unification by recognizing that the observer’s existence is the foundational premise underlying all scientific inquiry. It develops as an event-oriented physical theory in which the first-person observer is central. By analyzing the methods through which we human observers gain knowledge and create the belief systems within which our experiences are explained, we discover a fundamental truth: all systems are observers and exhibit some form of internal awareness. Events, not the objects appearing in them, are the fundamental building blocks of reality. The book is comprised of three parts: the first addresses the paradigm shift from an object to an event-oriented world view, the second develops the foundations of action physics for an event-oriented world view and the third provides examples of how these new ideas can be applied to move our knowledge up the next evolutionary step of human development. This book will benefit anyone questioning their role in the universe, especially those in interdisciplinary fields of philosophy, psychology, neuroscience and medicine, who seek understanding of quantum theory as the physics of conscious systems that know the world.