Progress in Standardization in Health Care Informatics


Book Description

Implementing ASTM 1238 on a national scale in France: The H. PR. I.M. experience 1990-1992 -- Multi Media and Broadband Communication Services: A new paradigm for Medical Imaging -- RECENT PROGRESS in STANDARDIZATION of MEDICAL IMAGING in AMERICA -- Standard Interchange for Computerized Electrocardiography -- Data Interchange for Clinical Neurophysiology -- Health Care Security and Privacy, Quality and Safety -- Standardization in Health Care Informatics Opportunities for International Cooperation -- Useful Addresses -- AUTHOR INDEX




Fundamentals of Clinical Data Science


Book Description

This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.




Registries for Evaluating Patient Outcomes


Book Description

This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.




Patient Safety


Book Description

Americans should be able to count on receiving health care that is safe. To achieve this, a new health care delivery system is needed â€" a system that both prevents errors from occurring, and learns from them when they do occur. The development of such a system requires a commitment by all stakeholders to a culture of safety and to the development of improved information systems for the delivery of health care. This national health information infrastructure is needed to provide immediate access to complete patient information and decision-support tools for clinicians and their patients. In addition, this infrastructure must capture patient safety information as a by-product of care and use this information to design even safer delivery systems. Health data standards are both a critical and time-sensitive building block of the national health information infrastructure. Building on the Institute of Medicine reports To Err Is Human and Crossing the Quality Chasm, Patient Safety puts forward a road map for the development and adoption of key health care data standards to support both information exchange and the reporting and analysis of patient safety data.




Sharing Clinical Research Data


Book Description

Pharmaceutical companies, academic researchers, and government agencies such as the Food and Drug Administration and the National Institutes of Health all possess large quantities of clinical research data. If these data were shared more widely within and across sectors, the resulting research advances derived from data pooling and analysis could improve public health, enhance patient safety, and spur drug development. Data sharing can also increase public trust in clinical trials and conclusions derived from them by lending transparency to the clinical research process. Much of this information, however, is never shared. Retention of clinical research data by investigators and within organizations may represent lost opportunities in biomedical research. Despite the potential benefits that could be accrued from pooling and analysis of shared data, barriers to data sharing faced by researchers in industry include concerns about data mining, erroneous secondary analyses of data, and unwarranted litigation, as well as a desire to protect confidential commercial information. Academic partners face significant cultural barriers to sharing data and participating in longer term collaborative efforts that stem from a desire to protect intellectual autonomy and a career advancement system built on priority of publication and citation requirements. Some barriers, like the need to protect patient privacy, pre- sent challenges for both sectors. Looking ahead, there are also a number of technical challenges to be faced in analyzing potentially large and heterogeneous datasets. This public workshop focused on strategies to facilitate sharing of clinical research data in order to advance scientific knowledge and public health. While the workshop focused on sharing of data from preplanned interventional studies of human subjects, models and projects involving sharing of other clinical data types were considered to the extent that they provided lessons learned and best practices. The workshop objectives were to examine the benefits of sharing of clinical research data from all sectors and among these sectors, including, for example: benefits to the research and development enterprise and benefits to the analysis of safety and efficacy. Sharing Clinical Research Data: Workshop Summary identifies barriers and challenges to sharing clinical research data, explores strategies to address these barriers and challenges, including identifying priority actions and "low-hanging fruit" opportunities, and discusses strategies for using these potentially large datasets to facilitate scientific and public health advances.




Advances in Medical Informatics


Book Description

Numerous experts in hospitals, universities, research institutes, industry and health agencies responded to the call of the commission of the European Communities for project proposals in the field of research and development of medical informatics, the AIM Exploratory Action. AIM is the acronym for Advanced Informatics in Medicine. The main objective of the AIM Programme is to further the usage of information technology and telecommunications in health care in the Community.




Advances in Health Telematics Education


Book Description

Get a head-start! The Student Workbook, which contains all of the Assessments, Activities, and Worksheets from the Instructor's Resource Binder. Use it for classroom discussions, in-class activities, and group work.




Improving Healthcare Quality in Europe Characteristics, Effectiveness and Implementation of Different Strategies


Book Description

This volume, developed by the Observatory together with OECD, provides an overall conceptual framework for understanding and applying strategies aimed at improving quality of care. Crucially, it summarizes available evidence on different quality strategies and provides recommendations for their implementation. This book is intended to help policy-makers to understand concepts of quality and to support them to evaluate single strategies and combinations of strategies.




Industrial Informatics Design, Use and Innovation: Perspectives and Services


Book Description

"This book provides a sound grounding in what industrial informatics is and in what directions the field is moving, providing a broad state-of-the-art review and showing connections and gaps in knowledge for those who design and use information technologies in industrial settings"--Provided by publisher.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data