The Pulsations of the Sun and the Stars


Book Description

This volume of lecture notes brings together the knowledge on pulsations of the Sun and the stars, with a particular emphasis on recent observations and modelling, and on the influence of pulsations of other physical processes. The book begins with an extensive introduction to helioseismology. The solar cycle and gravity modes are discussed before the focus is widened from helioseismology to asteroseismology which is detailed in a series of specific chapters. Based on courses given at a graduate school, these tutorial lecture notes will be of interest and useful to a rather broad audience of scientists and students.




Seismology of the Sun and the Distant Stars


Book Description

The history of modern helioseismology is only ten years old. In 1975 F-L Deubner separated for the first time the spatial and temporal pro perties of the solar five-minute oscillations, and was thus able to measure the dispersion relation for high-degree acoustic modes (p modes). The diagnostic value of these observations was appreciated immediately. Indeed, by comparing the observed relation with computations that had already been carried out by R.K. Ulrich, and subsequently by H. Ando and Y. Osaki, it was recognised that contemporary solar models that had been constructed with the low observed neutrino flux in mind were too hot in their outer layers. Moreover, their convection zones were too shallow. Since that time the observations have improved. There is now good reason to suppose that a sufficiently careful analysis will lead to a direct determination of the helium abundance in the solar convection zone, especially when foreseeable further improvements in the observations have been achieved. The data will also provide useful diagnostics of the uncertain equation of state of partially ionized plasmas, and they might also enable us to measure the large-scale structure of the convec tive flow.




The Sun: A Laboratory for Astrophysics


Book Description

As in the days following Skylab, solar physics came to the end of an era when the So lar Maximum Mission re-entered the earth's atmosphere in December 1989. The 1980s had been a pioneering decade not only in space- and ground-based studies of the solar atmosphere (Solar Maximum Mission, Hinotori, VLA, Big Bear, Nanc;ay, etc.) but also in solar-terrestrial relations (ISEE, AMPTE), and solar interior neutrino and helioseismol ogy studies. The pace of development in related areas of theory (nuclear, atomic, MHD, beam-plasma) has been equally impressive. All of these raised tantalizing further questions about the structure and dynamics of the Sun as the prototypical and best observed star. This Advanced Study Institute was timed at a pivotal point between that decade and the realisation of Yohkoh, Ulysses, SOHO, GRANAT, Coronas, and new ground-based optical facilities such as LEST and GONG, so as to teach and inspire the up and coming young solar researchers of the 1990s. The topics, lecturers, and students were all chosen with this goal in mind, and the result seems to have been highly successful by all reports.




The Structure of the Sun


Book Description

The complex internal structure of the Sun can now be studied in detail through helioseismology and neutrino astronomy. The VI Canary Islands Winter School of Astrophysics was dedicated to examining these powerful new techniques. Based on this meeting, eight specially-written chapters by world-experts are presented in this timely volume. We are shown how the internal composition and dynamical structure of the Sun can be deduced through helioseismology; and how the central temperature can be determined from the flux of solar neutrinos. This volume provides an excellent introduction for graduate students and an up-to-date overview for researchers working on the Sun, neutrino astronomy and helio- and asteroseismology.




Music of the Sun


Book Description

"Four hundred years after Kepler discovered his third law of planetary motion, disproving the Pythagorean notion of 'the music of the spheres', music was discovered in the Sun. With this discovery the science of helioseismology was born." "In Music of the Sun, renowned helioseismologist William Chaplin tells the story of this discipline's origins and gives us invaluable insight into its implications - not only for better understanding the distant sun and stars - but for climate change, particle physics, and the very relationship between the Sun and the Earth."--BOOK JACKET.




The Sun, the Earth, and Near-earth Space


Book Description

" ... Concise explanations and descriptions - easily read and readily understood - of what we know of the chain of events and processes that connect the Sun to the Earth, with special emphasis on space weather and Sun-Climate."--Dear Reader.




Asteroseismic Data Analysis


Book Description

Studies of stars and stellar populations, and the discovery and characterization of exoplanets, are being revolutionized by new satellite and telescope observations of unprecedented quality and scope. Some of the most significant advances have been in the field of asteroseismology, the study of stars by observation of their oscillations. Asteroseismic Data Analysis gives a comprehensive technical introduction to this discipline. This book not only helps students and researchers learn about asteroseismology; it also serves as an essential instruction manual for those entering the field. The book presents readers with the foundational techniques used in the analysis and interpretation of asteroseismic data on cool stars that show solar-like oscillations. The techniques have been refined, and in some cases developed, to analyze asteroseismic data collected by the NASA Kepler mission. Topics range from the analysis of time-series observations to extract seismic data for stars to the use of those data to determine global and internal properties of the stars. Reading lists and problem sets are provided, and data necessary for the problem sets are available online. The first book to describe in detail the different techniques used to analyze the data on stellar oscillations, Asteroseismic Data Analysis offers an invaluable window into the hearts of stars. Introduces the asteroseismic study of stars and the theory of stellar oscillations Describes the analysis of observational (time-domain) data Examines how seismic parameters are extracted from observations Explores how stellar properties are determined from seismic data Looks at the “inverse problem,” where frequencies are used to infer internal structures of stars




Theoretical Global Seismology


Book Description

After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.




Progress in Solar Physics


Book Description




Extraterrestrial Seismology


Book Description

Seismology is a highly effective tool for investigating the internal structure of the Earth. Similar techniques have also successfully been used to study other planetary bodies (planetary seismology), the Sun (helioseismology), and other stars (asteroseismology). Despite obvious differences between stars and planetary bodies, these disciplines share many similarities and together form a coherent field of scientific research. This unique book takes a transdisciplinary approach to seismology and seismic imaging, reviewing the most recent developments in these extraterrestrial contexts. With contributions from leading scientists, this timely volume systematically outlines the techniques used in observation, data processing, and modelling for asteroseismology, helioseismology, and planetary seismology, drawing comparisons with seismic methods used in geophysics. Important recent discoveries in each discipline are presented. With an emphasis on transcending the traditional boundaries of astronomy, solar, planetary and Earth sciences, this novel book is an invaluable resource and reference for undergraduates, postgraduates and academics.