Blast Effects on Buildings


Book Description

Reflects developments in the field of blast engineering since the early 1990s. Combining coverage of the design standards, codes and materials with an appreciation of the needs and demands of the designer, this book provides the engineer with a comprehensive source of reference for the main elements of blast engineering design in modern practice.




Handbook for Blast Resistant Design of Buildings


Book Description

Unique single reference supports functional and cost-efficient designs of blast resistant buildings Now there's a single reference to which architects, designers, and engineers can turn for guidance on all the key elements of the design of blast resistant buildings that satisfy the new ASCE Standard for Blast Protection of Buildings as well as other ASCE, ACI, and AISC codes. The Handbook for Blast Resistant Design of Buildings features contributions from some of the most knowledgeable and experienced consultants and researchers in blast resistant design. This handbook is organized into four parts: Part 1, Design Considerations, sets forth basic principles, examining general considerations in the design process; risk analysis and reduction; criteria for acceptable performance; materials performance under the extraordinary blast environment; and performance verification for technologies and solution methodologies. Part 2, Blast Phenomena and Loading, describes the explosion environment, loading functions needed for blast response analysis, and fragmentation and associated methods for effects analysis. Part 3, System Analysis and Design, explains the analysis and design considerations for structural, building envelope, component space, site perimeter, and building system designs. Part 4, Blast Resistant Detailing, addresses the use of concrete, steel, and masonry in new designs as well as retrofitting existing structures. As the demand for blast resistant buildings continues to grow, readers can turn to the Handbook for Blast Resistant Design of Buildings, a unique single source of information, to support competent, functional, and cost-efficient designs.




Basic Principles of Concrete Structures


Book Description

Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.




Failures in Concrete Structures


Book Description

This book presents a selection of the author‘s firsthand experience with incidents related to reinforced and prestressed concrete structures, helping readers gain an understanding of errors that can occur in order to avoid making them. He includes mistakes discovered at the design stage, ones that led to failures, and some that involved partial structure collapse all of which required remedial action to ensure safety. The book focuses on specific incidents that occurred at various points in the construction process, including mistakes related to structural misunderstanding, extrapolation of codes of practice, and poor construction.




Proceedings of SECON’21


Book Description

This book gathers peer-reviewed contributions presented at the International Conference on Structural Engineering and Construction Management (SECON’21), held on 12-15 May 2021. The meeting served as a fertile platform for discussion, sharing sound knowledge and introducing novel ideas on issues related to sustainable construction and design for the future. The respective contributions address various aspects of numerical modeling and simulation in structural engineering, structural dynamics and earthquake engineering, advanced analysis and design of foundations, BIM, building energy management, and technical project management. Accordingly, the book offers a valuable, up-to-date tool and essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.




Structural Design for Fire Safety


Book Description

Structural Design for Fire Safety, 2nd edition Andrew H. Buchanan, University of Canterbury, New Zealand Anthony K. Abu, University of Canterbury, New Zealand A practical and informative guide to structural fire engineering This book presents a comprehensive overview of structural fire engineering. An update on the first edition, the book describes new developments in the past ten years, including advanced calculation methods and computer programs. Further additions include: calculation methods for membrane action in floor slabs exposed to fires; a chapter on composite steel-concrete construction; and case studies of structural collapses. The book begins with an introduction to fire safety in buildings, from fire growth and development to the devastating effects of severe fires on large building structures. Methods of calculating fire severity and fire resistance are then described in detail, together with both simple and advanced methods for assessing and designing for structural fire safety in buildings constructed from structural steel, reinforced concrete, or structural timber. Structural Design for Fire Safety, 2nd edition bridges the information gap between fire safety engineers, structural engineers and building officials, and it will be useful for many others including architects, code writers, building designers, and firefighters. Key features: • Updated references to current research, as well as new end-of-chapter questions and worked examples. •Authors experienced in teaching, researching, and applying structural fire engineering in real buildings. • A focus on basic principles rather than specific building code requirements, for an international audience. An essential guide for structural engineers who wish to improve their understanding of buildings exposed to severe fires and an ideal textbook for introductory or advanced courses in structural fire engineering.




Research and Applications in Structural Engineering, Mechanics and Computation


Book Description

Research and Applications in Structural Engineering, Mechanics and Computation contains the Proceedings of the Fifth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2013, Cape Town, South Africa, 2-4 September 2013). Over 420 papers are featured. Many topics are covered, but the contributions may be seen to fall




Structural Use of Concrete


Book Description

Concretes, Construction materials, Buildings, Structures, Structural design, Loading, Reinforced concrete, Strength of materials, Framed structures, Beams, Slabs, Structural members, Shear stress, Columns, Walls, Stability, Stairs, Foundations, Reinforcement, Prestressed concrete, Precast concrete, Composite construction, Composition, Durability, Concrete mixes, Curing (concrete), Formwork, Finishes, Movement joints, Grouting




Progressive Collapse of Structures


Book Description

Progressive Collapse of Structures, Second edition provides structural engineers with the practical and systematic frameworks they need to anticipate the risk of progressive and/or disproportionate collapse, and to apply this knowledge to the design of new structures as well as the retrofit design of existing structures.