Applying Artificial Intelligence in Project Management


Book Description

This book describes the AI tools in concept and how they apply directly to project success. It also demonstrates the strategy and methods used to purchase and implement AI tools for project management. You will understand the difference between automating a task and changing it by using AI. Discover how AI uses data and the importance of data maintenance. Learn why projects fail and how using artificial intelligence for project management improves project success rates. The book features project management success stories and demonstrates how to leave behind that low project success rate for one that is 95 percent or higher. Supplemental teaching materials are available for use as a textbook. FEATURES: Covers a practical approach to using AI in project management Features a chapter on combining AI with other technologies such as IoT, Blockchain, and virtual reality for further insights into leading-edge changes for project management Demonstrates how to achieve higher productivity and incredible project performance by applying AI concepts Includes supplemental teaching materials for use as a textbook




Project Management – an Artificial Intelligent (Ai) Approach


Book Description

This book is a novel treatment of modern project management from artificial intelligence (AI), entailing data analytics, neural networks, fuzzy logic, genetic algorithms; and data visualisation deploying agent based modelling for the knowledge based urban development (KBUD). The book can be adopted by design engineers, urban planners, project managers, quantity and real estate surveyors, public and private real estate developers, architects and scholars. Chapter 1 discusses that the traditional statistical method, which needs a priori parametric knowledge of linear or non-linear functions between the input and output variables. Nneural networks do not need such information to predict future possible outcomes. Chapter 2 reiterates that new private office and residential supply like in Hong Kong depend on current market prices, relative to the replacement or building costs. The market should equate prices with replacement costs that include the cost of land. Prices and costs may diverge because of lags and delays in the building process. Chapter 3 discusses the specific tasks to be planned to develop life cycle models and metrics to analyse technology and innovation. Such models can look into life cycle cost analysis (LCA). Chapter 4 draws attention to the trend that in a highly volatile world, the best point estimate of classical DCF model is not a reliable indication of investment worth. The fuzzy discounted cash flow (DCF) model offers a natural and intuitive way, based on a set of fuzzy inputs. The fuzzy net present value (NPV) for an office-cum-retail development is so estimated to provide the approximated evaluation of investment worth. Chapter 5 discusses the fuzzy tactical asset allocation (FTAA) model, incorporating intuitive decision making into the direct real estate project (asset) allocation process, from the expert investor prospective. The FTAA model improves the efficiency of asset allocation, adopting fuzzy set theory and fuzzy optimization theory. Chapter 6 reiterates that today’s city planners see the KBUD strategy as a new form of urban renewal for industrial cities. Planners believe KBUDs bring economic, technological progress and sustainable socio-spatial order to the contemporary city. Chapter 6 addresses the need for an urban design criterion that aids in efficient land use planning for KBUDs.




Robot-Proof, revised and updated edition


Book Description

A fresh look at a “robot-proof” education in the new age of generative AI. In 2017, Robot-Proof, the first edition, foresaw the advent of the AI economy and called for a new model of higher education designed to help human beings flourish alongside smart machines. That economy has arrived. Creative tasks that, seven years ago, seemed resistant to automation can now be performed with a simple prompt. As a result, we must now learn not only to be conversant with these technologies, but also to comprehend and deploy their outputs. In this revised and updated edition, Joseph Aoun rethinks the university’s mission for a world transformed by AI, advocating for the lifelong endeavor of a “robot-proof” education. Aoun puts forth a framework for a new curriculum, humanics, which integrates technological, data, and human literacies in an experiential setting, and he renews the call for universities to embrace lifelong learning through a social compact with government, employers, and learners themselves. Drawing on the latest developments and debates around generative AI, Robot-Proof is a blueprint for the university as a force for human reinvention in an era of technological change—an era in which we must constantly renegotiate the shifting boundaries between artificial intelligence and the capacities that remain uniquely human.




Artificial Intelligence and Project Management


Book Description

Although some people had doubts about the usefulness of such solutions in the past, artificial intelligence (AI) plays a growing role in modern business. It can be expected that the interest in it will also lead to an increase in support for the planning, evaluation, and implementation of projects. In particular, the proper functioning of multifaceted evaluation methods has a crucial impact on the appropriate planning and execution of various projects, as well as the effective achievement of the organization’s goals. This book offers a presentation of the complex problems and challenges related to the development of AI in project management, proposes an integrated approach to knowledge-based evaluation, and indicates the possibilities of improving professional practical knowledge in this field. The unique contribution of this book is to draw attention to the possibilities resulting from conducting transdisciplinary research and drawing on the rich achievements in the field of research development on knowledge-based systems that can be used to holistically support the processes of planning, evaluation, and project management. The concept of the integrated approach to knowledge-based evaluation is presented and developed as a result of drawing inspiration mainly from the systems approach, generative AI, and selected mathematical models. Presented in a highly accessible manner, the book discusses mathematical tools in a simple way, which enables understanding of the content by readers across broad subject areas who may be not only participants in specialist training and university students but also practitioners, consultants, or evaluators. This book will be a valuable resource for academics and upper-level students, in particular, across project management-related fields, and of great interest to all those looking to understand the challenges and effectiveness of AI in business.




Artificial Intelligence in Construction Engineering and Management


Book Description

This book highlights the latest technologies and applications of Artificial Intelligence (AI) in the domain of construction engineering and management. The construction industry worldwide has been a late bloomer to adopting digital technology, where construction projects are predominantly managed with a heavy reliance on the knowledge and experience of construction professionals. AI works by combining large amounts of data with fast, iterative processing, and intelligent algorithms (e.g., neural networks, process mining, and deep learning), allowing the computer to learn automatically from patterns or features in the data. It provides a wide range of solutions to address many challenging construction problems, such as knowledge discovery, risk estimates, root cause analysis, damage assessment and prediction, and defect detection. A tremendous transformation has taken place in the past years with the emerging applications of AI. This enables industrial participants to operate projects more efficiently and safely, not only increasing the automation and productivity in construction but also enhancing the competitiveness globally.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Enterprise Artificial Intelligence Transformation


Book Description

Enterprise Artificial Intelligence Transformation AI is everywhere. From doctor's offices to cars and even refrigerators, AI technology is quickly infiltrating our daily lives. AI has the ability to transform simple tasks into technological feats at a human level. This will change the world, plain and simple. That's why AI mastery is such a sought-after skill for tech professionals. Author Rashed Haq is a subject matter expert on AI, having developed AI and data science strategies, platforms, and applications for Publicis Sapient's clients for over 10 years. He shares that expertise in the new book, Enterprise Artificial Intelligence Transformation. The first of its kind, this book grants technology leaders the insight to create and scale their AI capabilities and bring their companies into the new generation of technology. As AI continues to grow into a necessary feature for many businesses, more and more leaders are interested in harnessing the technology within their own organizations. In this new book, leaders will learn to master AI fundamentals, grow their career opportunities, and gain confidence in machine learning. Enterprise Artificial Intelligence Transformation covers a wide range of topics, including: Real-world AI use cases and examples Machine learning, deep learning, and slimantic modeling Risk management of AI models AI strategies for development and expansion AI Center of Excellence creating and management If you're an industry, business, or technology professional that wants to attain the skills needed to grow your machine learning capabilities and effectively scale the work you're already doing, you'll find what you need in Enterprise Artificial Intelligence Transformation.




Artificial Intelligence for Managers


Book Description

Understand how to adopt and implement AI in your organization Key Features _ 7 Principles of an AI Journey _ The TUSCANE Approach to Become Data Ready _ The FAB-4 Model to Choose the Right AI Solution _ Major AI Techniques & their Applications: - CART & Ensemble Learning - Clustering, Association Rules & Search - Reinforcement Learning - Natural Language Processing - Image Recognition Description Most AI initiatives in organizations fail today not because of a lack of good AI solutions, but because of a lack of understanding of AI among its end users, decision makers and investors. Today, organizations need managers who can leverage AI to solve business problems and provide a competitive advantage. This book is designed to enable you to fill that need, and create an edge for your career. The chapters offer unique managerial frameworks to guide an organization's AI journey. The first section looks at what AI is; and how you can prepare for it, decide when to use it, and avoid pitfalls on the way. The second section dives into the different AI techniques and shows you where to apply them in business. The final section then prepares you from a strategic AI leadership perspective to lead the future of organizations. By the end of the book, you will be ready to offer any organization the capability to use AI successfully and responsibly - a need that is fast becoming a necessity. What will you learn _ Understand the major AI techniques & how they are used in business. _ Determine which AI technique(s) can solve your business problem. _ Decide whether to build or buy an AI solution. _ Estimate the financial value of an AI solution or company. _ Frame a robust policy to guide the responsible use of AI. Who this book is for This book is for Executives, Managers and Students on both Business and Technical teams who would like to use Artificial Intelligence effectively to solve business problems or get an edge in their careers. Table of Contents 1.Preface 2.Acknowledgement 3.About the Author 4.Section 1: Beginning an AI Journey a. AI Fundamentals b. 7 Principles of an AI Journey c. Getting Ready to Use AI 5.Section 2: Choosing the Right AI Techniques a. Inside the AI Laboratory b. How AI Predicts Values & Categories c. How AI Understands and Predicts Behaviors & Scenarios d. How AI Communicates & Learns from Mistakes e. How AI Starts to Think Like Humans 6.Section 3: Using AI Successfully & Responsibly a. AI Adoption & Valuation b. AI Strategy, Policy & Risk Management 7.Epilogue




Human-Centered AI


Book Description

The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity.




The AI Revolution in Project Management


Book Description

The AI Revolution in Project Management: Unlocking Success Secrets with AI" explores the transformative power of artificial intelligence in revolutionizing project management. Peter F. Schindler guides readers through the integration of AI into project management, illustrating its potential to enhance efficiency, optimize both classic and agile projects, and overcome traditional challenges. This book is essential for decision-makers aiming to leverage AI for profitable project advancements, offering practical insights, strategies, and case studies from various industries. It serves as a comprehensive manual for navigating the complexities of AI integration, ensuring project success in an era where technological advancements redefine the standards of management and execution. Perfect for professionals seeking to stay ahead in the rapidly evolving business landscape, this book provides the tools to harness AI's capabilities, transforming challenges into opportunities for unprecedented project success.