Projects as Socio-Technical Systems in Engineering Education


Book Description

This book presents the case for Project-Based Learning within Socio-Technical Systems in Engineering Education. The book highlights the importance of projects as Socio-Technical Systems as a means for supporting and enhancing international accreditation of engineering programs. Practical examples illustrate how Socio-Technical Systems are brought into the educational environment through Project-Based Learning. The book goes on to discusses the impact this may have on Engineering Education practice. The work presented will enable engineering educators to develop curricula that can respond to societal needs, while also enhancing teaching and learning. It offers an approach to engineering education that centers on engaging scholars in projects that are located within socio-technical systems. University, government and industry leaders will gain from this book as it provides insight into strategic planning and partnership-building for Engineering Education. We hope this book will further foster deep scholarship of research to ready engineering faculties for engaging responsibly with their surrounding communities. Features: Offers applications of Project-Based Learning (PBL) in Engineering Education Matches elements of Socio-Technical Systems in Higher Engineering Education, with the Exit Level Outcomes (ELOs) required by professional engineering bodies Provides practical examples for the establishment of project environments within an academic faculty Shows examples in the success of execution of projects involving engineering educators, researchers, program developers, government agencies and industry partners Presents a framework to develop Project-Based Learning in Engineering Education that addresses Socio-Technical requirements and will enable engineering educators to collaboratively develop engineering curricula with industry that will respond to societal needs







Responsible Innovation


Book Description

Science and innovation have the power to transform our lives and the world we live in - for better or worse – in ways that often transcend borders and generations: from the innovation of complex financial products that played such an important role in the recent financial crisis to current proposals to intentionally engineer our Earth’s climate. The promise of science and innovation brings with it ethical dilemmas and impacts which are often uncertain and unpredictable: it is often only once these have emerged that we feel able to control them. How do we undertake science and innovation responsibly under such conditions, towards not only socially acceptable, but socially desirable goals and in a way that is democratic, equitable and sustainable? Responsible innovation challenges us all to think about our responsibilities for the future, as scientists, innovators and citizens, and to act upon these. This book begins with a description of the current landscape of innovation and in subsequent chapters offers perspectives on the emerging concept of responsible innovation and its historical foundations, including key elements of a responsible innovation approach and examples of practical implementation. Written in a constructive and accessible way, Responsible Innovation includes chapters on: Innovation and its management in the 21st century A vision and framework for responsible innovation Concepts of future-oriented responsibility as an underpinning philosophy Values – sensitive design Key themes of anticipation, reflection, deliberation and responsiveness Multi – level governance and regulation Perspectives on responsible innovation in finance, ICT, geoengineering and nanotechnology Essentially multidisciplinary in nature, this landmark text combines research from the fields of science and technology studies, philosophy, innovation governance, business studies and beyond to address the question, “How do we ensure the responsible emergence of science and innovation in society?”




Engineering Systems


Book Description

An overview of engineering systems that describes the new challenges posed for twenty-first-century engineers by today's highly complex sociotechnical systems. Engineering, for much of the twentieth century, was mainly about artifacts and inventions. Now, it's increasingly about complex systems. As the airplane taxis to the gate, you access the Internet and check email with your PDA, linking the communication and transportation systems. At home, you recharge your plug-in hybrid vehicle, linking transportation to the electricity grid. Today's large-scale, highly complex sociotechnical systems converge, interact, and depend on each other in ways engineers of old could barely have imagined. As scale, scope, and complexity increase, engineers consider technical and social issues together in a highly integrated way as they design flexible, adaptable, robust systems that can be easily modified and reconfigured to satisfy changing requirements and new technological opportunities. Engineering Systems offers a comprehensive examination of such systems and the associated emerging field of study. Through scholarly discussion, concrete examples, and history, the authors consider the engineer's changing role, new ways to model and analyze these systems, the impacts on engineering education, and the future challenges of meeting human needs through the technologically enabled systems of today and tomorrow.




Transdisciplinary Engineering for Complex Socio-technical Systems – Real-life Applications


Book Description

Transdisciplinary engineering transcends other inter- and multi-disciplinary ways of working, such as Concurrent Engineering (CE). In particular, transdisciplinary processes are aimed at solving complex, ill-defined problems, or problems for which the solution is not immediately obvious. No one discipline or single person can provide sufficient knowledge to solve such problems, so collaboration is essential. This book presents the proceedings of the 27th ISTE International Conference on Transdisciplinary Engineering, organized by Warsaw University of Technology, Poland, from 1-10 July 2020. ISTE2020 was the first of this conference series to be held virtually, due to the COVID-19 restrictions. Entitled Transdisciplinary Engineering for Complex Socio-technical Systems - Real-life Applications, the book includes 71 peer-reviewed papers presented at the conference by authors from 17 countries. These range from theoretical and conceptual to strongly pragmatic and addressing industrial best practice and, together with invited talks, they have been collated into 9 sections: Transdisciplinary Engineering (7 papers); Transdisciplinary Engineering Education (4 papers); Industry 4.0, Methods and Tools (7 papers); Human-centered Design (8 papers); Methods and Tools for Design and Production (14 papers); Product and Process Development (9 papers); Knowledge and Data Modeling (13 papers); Business Process and Supply Chain Management (7 papers); and Sustainability (2 papers). The book provides an overview of new approaches, methods, tools and their applications, as well as current research and development, and will be of interest to researchers, design practitioners, and educators working in the field.




Engineering a Better Future


Book Description

This open access book examines how the social sciences can be integrated into the praxis of engineering and science, presenting unique perspectives on the interplay between engineering and social science. Motivated by the report by the Commission on Humanities and Social Sciences of the American Association of Arts and Sciences, which emphasizes the importance of social sciences and Humanities in technical fields, the essays and papers collected in this book were presented at the NSF-funded workshop ‘Engineering a Better Future: Interplay between Engineering, Social Sciences and Innovation’, which brought together a singular collection of people, topics and disciplines. The book is split into three parts: A. Meeting at the Middle: Challenges to educating at the boundaries covers experiments in combining engineering education and the social sciences; B. Engineers Shaping Human Affairs: Investigating the interaction between social sciences and engineering, including the cult of innovation, politics of engineering, engineering design and future of societies; and C. Engineering the Engineers: Investigates thinking about design with papers on the art and science of science and engineering practice.




Informatics and the Digital Society


Book Description

SECIII-Social, Ethical and Cognitive Issues of Informatics and ICT Welcome to the post-conference book of SECIII, the IFIP Open Conference on Social, Ethical and Cognitive Issues of Informatics and ICT (Information and Communication Technology) which took place from July 22-26, 2002 at the University of Dortmund, Germany, in co-operation with the German computer society (Gesellschaft flir Informatik). Unlike most international conferences, those organised within the IFIP education community are active events. This wasn't a dry academic conference - teachers, lecturers and curriculum experts, policy makers, researchers and manufacturers mingled and worked together to explore, reflect and discuss social, ethical and cognitive issues. The added value lies in what they, the participants, took away in new ideas for future research and practice, and in the new networks that were formed, both virtual and real. In addition to Keynote Addresses and Paper Presentations from international authors, there were Provocative Paper sessions, Case Studies, Focussed Debates and Creative Exchange sessions as well as professional Working Groups who debated particular themes. The Focussed Debate sessions helped to stimulate the sense of engagement among conference participants. A Market Place with follow-up Working Groups was a positive highlight and galvanised participants to produce interesting reports. These were presented to the conference on its last day. Cross-fertilisation between the papers generated some surprising and useful cross-referencing and a plethora of social, ethical and cognitive issues emerged in the discussions that followed the paper presentations.







Transdisciplinary Engineering for Complex Socio-technical Systems


Book Description

Industry and society are complex socio-technical systems, and both face problems that can only be solved by collaboration between different disciplines. Collaboration between academia and practice is also needed to develop viable solutions. Many engineering problems also require such an approach, which is known as Transdisciplinary Engineering (TE). This book presents the proceedings of the 26th ISTE International Conference on Transdisciplinary Engineering, held in Tokyo, Japan, from 30 July - 1 August 2019. The title of the conference was: Transdisciplinary Engineering for Complex Socio-technical Systems, and of the 86 submitted papers, 68 peer-reviewed papers by authors from 17 countries were delivered at the conference. These papers range from theoretical and conceptual to strongly pragmatic. They address industrial best practice and are grouped here under 10 themes: advanced robotics for smart manufacturing; design of personalized products and services; engineering methods for industry 4.0; additive and subtractive manufacturing; decision supporting tools and methods; complex systems engineering; big data analytics in manufacturing and services; concurrent engineering; cost modeling; and digital manufacturing, modeling and simulation. Presenting the latest research results and knowledge of product creation processes and related methodologies, the book will be of interest to researchers, design practitioners, and educators alike.




Engineering Education


Book Description

A synthesis of nearly 2,000 articles to help make engineers better educators While a significant body of knowledge has evolved in the field of engineering education over the years, much of the published information has been restricted to scholarly journals and has not found a broad audience. This publication rectifies that situation by reviewing the findings of nearly 2,000 scholarly articles to help engineers become better educators, devise more effective curricula, and be more effective leaders and advocates in curriculum and research development. The author's first objective is to provide an illustrative review of research and development in engineering education since 1960. His second objective is, with the examples given, to encourage the practice of classroom assessment and research, and his third objective is to promote the idea of curriculum leadership. The publication is divided into four main parts: Part I demonstrates how the underpinnings of education—history, philosophy, psychology, sociology—determine the aims and objectives of the curriculum and the curriculum's internal structure, which integrates assessment, content, teaching, and learning Part II focuses on the curriculum itself, considering such key issues as content organization, trends, and change. A chapter on interdisciplinary and integrated study and a chapter on project and problem-based models of curriculum are included Part III examines problem solving, creativity, and design Part IV delves into teaching, assessment, and evaluation, beginning with a chapter on the lecture, cooperative learning, and teamwork The book ends with a brief, insightful forecast of the future of engineering education. Because this is a practical tool and reference for engineers, each chapter is self-contained and may be read independently of the others. Unlike other works in engineering education, which are generally intended for educational researchers, this publication is written not only for researchers in the field of engineering education, but also for all engineers who teach. All readers acquire a host of practical skills and knowledge in the fields of learning, philosophy, sociology, and history as they specifically apply to the process of engineering curriculum improvement and evaluation.