Proof Theory for Fuzzy Logics


Book Description

Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems (including key standard completeness results) and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations.




35 Years of Fuzzy Set Theory


Book Description

This book is a tribute to Etienne E. Kerre on the occasion of his retirement on October 1st, 2010, after being active for 35 years in the field of fuzzy set theory. It gathers contributions from researchers that have been close to him in one way or another during his long and fruitful career. Besides a foreword by Lotfi A. Zadeh, it contains 13 chapters on both theoretical and applied topics in fuzzy set theory, divided in three parts: 1) logics and connectives, 2) data analysis, and 3) media applications. The first part deals with fuzzy logics and with operators on (extensions of) fuzzy sets. Part 2 deals with fuzzy methods in rough set theory, formal concept analysis, decision making and classification. The last part discusses the use of fuzzy methods for representing and manipulating media objects, such as images and text documents. The diversity of the topics that are covered reflect the diversity of Etienne's research interests, and indeed, the diversity of current research in the area of fuzzy set theory.




Lectures on Soft Computing and Fuzzy Logic


Book Description

The present volume collects selected papers arising from lectures delivered by the authors at the School on Fuzzy Logic and Soft Computing held during the years 1996/97/98/99 and sponsored by the Salerno University. The authors contributing to this volume agreed with editors to write down, to enlarge and, in many cases, to rethink their original lectures, in order to offer to readership, a more compact presentation of the proposed topics. The aim of the volume is to offer a picture, as a job in progress, of the effort that is coming in founding and developing soft computing's techniques. The volume contains papers aimed to report on recent results containing genuinely logical aspects of fuzzy logic. The topics treated in this area cover algebraic aspects of Lukasiewicz Logic, Fuzzy Logic as the logic of continuous t-norms, Intuitionistic Fuzzy Logic. Aspects of fuzzy logic based on similar ity relation are presented in connection with the problem of flexible querying in deductive database. Departing from fuzzy logic, some papers present re sults in Probability Logic treating computational aspects, results based on indishernability relation and a non commutative version of generalized effect algebras. Several strict applications of soft computing are presented in the book. Indeed we find applications ranging among pattern recognition, image and signal processing, evolutionary agents, fuzzy cellular networks, classi fication in fuzzy environments. The volume is then intended to serve as a reference work for foundational logico-algebraic aspect of Soft Computing and for concrete applications of soft computing technologies.




Handbook of Mathematical Fuzzy Logic


Book Description

Originating as an attempt to provide solid logical foundations for fuzzy set theory, and motivated also by philosophical and computational problems of vagueness and imprecision, Mathematical Fuzzy Logic (MFL) has become a significant subfield of mathematical logic. Research in this area focuses on many-valued logics with linearly ordered truth values and has yielded elegant and deep mathematical theories and challenging problems, thus continuing to attract an ever increasing number of researchers. This handbook provides, through its several volumes, an up-to-date systematic presentation of the best-developed areas of MFL. Its intended audience is researchers working on MFL or related fields, that may use the text as a reference book, and anyone looking for a comprehensive introduction to MFL. This handbook will be useful not only for readers interested in pure mathematical logic, but also for those interested in logical foundations of fuzzy set theory or in a mathematical apparatus suitable for dealing with some philosophical and linguistic issues related to vagueness. This third volume starts with three chapters on semantics of fuzzy logics, namely, on the structure of linearly ordered algebras, on semantic games, and on Ulam-Renyi games; it continues with an introduction to fuzzy logics with evaluated syntax, a survey of fuzzy description logics, and a study of probability on MV-algebras; and it ends with a philosophical chapter on the role of fuzzy logics in theories of vagueness."




Theory of Graded Consequence


Book Description

This book introduces the theory of graded consequence (GCT) and its mathematical formulation. It also compares the notion of graded consequence with other notions of consequence in fuzzy logics, and discusses possible applications of the theory in approximate reasoning and decision-support systems. One of the main points where this book emphasizes on is that GCT maintains the distinction between the three different levels of languages of a logic, namely object language, metalanguage and metametalanguage, and thus avoids the problem of violation of the principle of use and mention; it also shows, gathering evidences from existing fuzzy logics, that the problem of category mistake may arise as a result of not maintaining distinction between levels.




Neutrosophic logics on Non-Archimedean Structures


Book Description

We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom.




Algebraic and Proof-theoretic Aspects of Non-classical Logics


Book Description

Published in honor of Daniele Mundici on the occasion of his 60th birthday, the 17 revised papers of this Festschrift volume include invited extended versions of the most interesting contributions to the International Conference on the Algebraic and Logical Foundations of Many-Valued Reasoning, held in Gargnano, Italy, in March 2006. Edited in collaboration with FoLLI, the Association of Logic, Language and Information, it is the third volume of the FoLLI LNAI subline.




Automated Reasoning with Analytic Tableaux and Related Methods


Book Description

This book constitutes the refereed proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2002, held in Copenhagen, Denmark, in July/August 2002. The 20 revised full papers and two system descriptions presented together with two invited contributions were carefully reviewed and selected for inclusion in the book. All current issues surrounding the mechanization of logical reasoning with tableaux and similar methods are addressed. Among the logic calculi investigated are linear logic, temporal logic, modal logics, hybrid logic, multi-modal logics, fuzzy logics, Goedel logic, Lukasiewicz logic, intermediate logics, quantified boolean logic, and, of course, classical first-order logic.




Neutrality and Many-Valued Logics


Book Description

In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. Recall that hypersequents are a natural generalization of Gentzen's style sequents that was introduced independently by Avron and Pottinger. In particular, we consider Hilbert's style, sequent, and hypersequent calculi for infinite-valued logics based on the three fundamental continuous t-norms: Lukasiewicz's, Godel?s, and Product logics. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Godel?s, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. We consider two cases of non-Archimedean multi-valued logics: the first with many-validity in the interval [0,1] of hypernumbers and the second with many-validity in the ring of p-adic integers. Notice that in the second case we set discrete infinite-valued logics. Logics investigated: 1. hyperrational valued Lukasiewicz's, Godel?s, and Product logics, 2. hyperreal valued Lukasiewicz's, Godel?s, and Product logics, 3. p-adic valued Lukasiewicz's, Godel?s, and Post's logics.




Logic for Programming, Artificial Intelligence, and Reasoning


Book Description

This volume contains the papers presented at the Eighth International C- ference on Logic for Programming, Arti?cial Intelligence and Reasoning (LPAR 2001), held on December 3-7, 2001, at the University of Havana (Cuba), together with the Second International Workshop on Implementation of Logics. There were 112 submissions, of which 19 belonged to the special subm- sion category of experimental papers, intended to describe implementations or comparisons of systems, or experiments with systems. Each submission was - viewed by at least three program committee members and an electronic program committee meeting was held via the Internet. The high number of submissions caused a large amount of work, and we are very grateful to the other 31 PC members for their e?ciency and for the quality of their reviews and discussions. Finally, the committee decided to accept 40papers in the theoretical ca- gory, and 9 experimental papers. In addition to the refereed papers, this volume contains an extended abstract of the invited talk by Frank Wolter. Two other invited lectures were given by Matthias Baaz and Manuel Hermenegildo. Apart from the program committee, we would also like to thank the other people who made LPAR 2001 possible: the additional referees; the Local Arran- ` gements Chair Luciano Garc ́?a; Andr ́es Navarro and Oscar Guell, ̈ who ran the internet-based submission software and the program committee discussion so- ware at the LSI Department lab in Barcelona; and Bill McCune, whose program committee management software was used.